Ivette: a Modern GUI for Frama-C

Loic Correnson

CEA, LIST, Software Safety Laboratory
PC 174, 91191 Gif-sur-Yvette France

loic.correnson@cea.fr

Abstract. Using a static analyzer such as Frama-C is known to be diffi-
cult, even for experienced users. Building a comfortable user interface to
alleviate those difficulties is however a complex task that requires many
technical issues to be handled that are outside the scope of static an-
alyzers techniques. In this paper, we present the design directions that
we have chosen for completely refactoring the old Graphical User Inter-
face of Frama-C within the ReactJS framework. In particular, we discuss
middleware and language issues, multithreaded client vs. batch analyzer
design, synchronization issues, multiple protocol support, plug-in inte-
gration, graphical and user-interaction techniques and how various pro-
gramming language traits scale (or not) for such a development project.

Keywords: Frama-C, ReactJS, Reactive Programming, Static Analysis
Server

1 Introduction

Frama-C [1,2] is a platform that offers mature and industrial strength static
analyzers for C/C++ programs. Built around a kernel responsible for parsing,
type-checking and analysis-results consolidation, the platform is extensible wvia
plug-ins that can offer new analyzers, new frontends or combine existing ones
in various ways. Frama-C is known to be used in education for teaching formal
methods [3-5], in research projects for prototyping new static analyzers [6-8]
and in industrial settings with the highest-level of certification constraints [9,
10].

Like any other state-of-the-art static analyzer, Frama-C is generally easy to
use at a first glance. However, for programs of increasing complexity, it be-
comes difficult, even for expert and experienced users, to tune the analyzers and
to understand and fix issues. Actually, Frama-C static analyzers like the EVA
Abstract Interpretation Analyzer and the WP Deductive Verification Engine,
produce huge sets of complex data during their computations. Sometimes, the
end-user will have to dive into those complex data for investigating the source
of a possible bug or an over-approximation of the analyzer, then re-start the
analyzer until all problems are fixed.

To make such a development cycle practicable, Frama-C was designed from its
very beginning to be accompanied by a Graphical User Interface (GUI). Instead

2 Loic Correnson

of running the frama-c command line, one can run the frama-c-gui command
with exactly the same arguments: this will perform exactly the same computa-
tions and open the GUI in order for the user to dive into the obtained results
and launch other computations interactively. Like the command-line interface,
frama-c-gui supports extension by plug-ins, such that any Frama-C plug-in may
extend the GUI with dedicated components.

Pitfalls of Frama-C’s mainstream GUI

Despite the many success stories we have encountered with frama-c-gui, we
also acknowledge many design, usability and deprecation issues. From a technical
point of view, frama-c-gui is written in OCaml with the LabIGTK bindings to
the GTK graphical environment. See Figure 1 for an illustration of this GUL

Fig. 1. The mainstream Frama-C GUI based on GTK

Although the choice of LablGTK had some advantages in the past, we have
experienced many pitfalls over the years with such a design:

— Experienced developers fluent in both GTK and OCaml are extremely rare;
more generally, experts in both Static Analyzers and User Interfaces are also
extremely rare, despite any personal affinities in both fields.

— Developing a new graphical component in LablGTL/GTK is very difficult
(e.g. to visualize graphs or diagrams).

— The GUI code is strongly coupled with the static analyzer. However, the
GUI code is necessarily interactive (asynchronous) from a user point of view,
whereas analyzer runs are definitely in batch mode (synchronous). Interleav-
ing the two approaches inevitably produces reliability issues that are difficult
to debug and fix.

— The GUI code is actually part of the static analyzers, which prevents Frama-
C from being integrated with other user environments (e.g. code editors)
without duplicating a lot of already existing code dedicated to the GUL

— Last, but not least, after more than 12 years of uncontrolled hacking, the
GUI code base has become completely unmaintainable.

Ivette: a Modern GUI for Frama-C 3

In addition to technical problems cited above, the mainstream Frama-C GUI
also has many issues from an end-user point of view:

— The user must wait before static analyzers finish their jobs before the GUI
becomes visible.

— In case the analyzers raise errors, it is difficult to restore a safe state without
exiting the GUI and restarting the entire process.

— The current implementation is cluttered by so many little bugs that using
the GUI on a regular basis can be tedious.

— The existing components are not completely satisfactory, but because of the
technical issues listed above, hardly nobody is akin to implement any new
features in this GUI.

— The organization of the main GUI window is far too rigid, and GUI plug-ins
have a very limited area available to interact with the user. This prevents
designing new components and new user interactions with the static analyz-
ers.

— With GTK, we have experienced some cross-platform differences and some
difficulties with system integration: they are difficult to predict, document
or even fix (e.g. on non-Linux platforms).

To finish on a more humorous note, we also acknowledge that using GTK has
become totally old-fashioned, just have a look to Figure 1! How to hype Formal
Methods, then?

Contributions

In response to the many pitfalls mentioned above, we decided to completely
redesign a new user interface for Frama-C. This led to a long-term engineering
effort, supported by many projects over the last 6 years. We started with a
deep survey of existing frameworks, experimenting with different platforms and
prototypes.

In this article, we overview in Section 2 our search for new design guidelines
and the final technical stack we ended up with. We then expose implementa-
tion details of the fundamental building blocks of our new lvette graphical user
interface for Frama-C: in Section 3 we will discuss middleware and the Frama-
C/Server plug-in; Section 4 will present how React Programming dramatically
reduced the complexity of GUI code; in Section 5 we will briefly present our
Dome framework of front-end components; finally we will present in Section 6
some specific features of lvette as a Static Analyzer user interface. Finally, we
will briefly mention future work directions in Section 7.

2 Towards a new GUI for Frama-C

Modern engines for HTML5, CSS and JavaScript are currently the most powerful
means to build complex graphical user interfaces, especially for scientists: no re-
search team will have enough manpower to re-create all the flexibility in layouts,
theming, system and GPU integration, that those technologies are offering.

4 Loic Correnson

However, there was still an open question for the Frama-C new user interface:
should it be a web application, a desktop one or an extension of some existing
Code Editor ? The last option would make Frama-C bound to a particular IDE,
although it is still an interesting option. However, we want to open the route to
like to radically different user interactions and more graphical data presentations.
Hence, since code editors remains intrinsically text-code oriented, we leave this
option for future work and keep on an HTML-based solution.

The common idea that both web and desktop applications are the same is
wrong! Although they can share a lot of common code, web and desktop apps
do not share the same design principles and are very different from a user per-
spective: for instance, in web applications, the data the user works with must be
centralized in a distant server, whereas in a desktop app, the user works with its
own file system.

As many Frama-C developers and users, we really want a desktop application:
we are running possibly under development Frama-C plug-ins on mostly under
development source files. The co-development cycle of analyzers and analyses
would be too slow if one had to connect-push-compile-and-run any modification
on-the-fly. We finally ended-up with the following strong design directions:

— The GUI shall be a desktop application based on an HTML/CSS engine.

— The GUI shall be coded in a language that User Interface experts know
about, with very good community support and open-source tools. This al-
lows for taking advantage of state-of-the art human-computer interaction
techniques.

— The GUI and the Static Analyzer shall live in independent processes, with
middlewares and protocols to connect them with each other; this will open
the route towards integration with different user environments and solve
many reliability issues.

— GUI components shall be as much as possible agnostic to the precise meaning
of static analyzer data; no complex semantic treatment over data shall be
performed on the GUI side, just like Excel doesn’t know what kind of data a
sheet deals with, but just organizes computations over strings and numbers
into cells.

— Static Analyzer plug-ins shall be ready to interact with some external User
Environment, but without any dependency on the middleware that will be
actually responsible for the connection. This interaction shall be coded into
the Frama-C code base with some dedicated support, hence in OCaml.

Ivette Overview

Of course, there is a choice of technical platforms that are suitable for imple-
menting such a plan. Note also that in this domain, libraries and tools are in
constant evolution. The technical stack we have chosen so far consists of the
following frameworks, also illustrated in Figure 2:

— A GUI desktop application using the HTML5 and NodelS engine of the
Electron [11] framework.

Ivette: a Modern GUI for Frama-C 5

oooon ©
Dome Ivette Dm— Server
= Frama-C Frama-C
Components Plug-Ins

Fig. 2. Technical Organization of Ivette

— A GUI code base written in TypeScript with the Reactive Programming
framework React]S [12].

— A Frama-C/Server plug-in written in OCaml, that provides an asynchronous,
JSON-based, strongly typed Request System.

— Each Frama-C plug-in will then register new requests in the Server plug-
in, independently of any communication protocol with any external User
Environment.

— A collection of middlewares and protocols written in different languages to
specifically connect the Frama-C/Server plug-in and the ReactJS code with
each other.

The GUI code itself is entirely written in TypeScript and is split into three parts:

— The Dome framework, which is a collection of carefully designed and themed
high-level components, offering a predefined choice of features, but that are
robust and well adapted to end-user needs (e.g. tables with built-in sizing,
sorting and filtering, text-editors with dynamic tag highlighting, etc.).

— The lvette framework, which is an application built with Electron and Dome
featuring the main Frama-C GUI graphical environment and managing the
connection with Frama-C via the Server plug-in.

— The Frama-C plug-in components for Ivette are build from Dome components
and interact with the Frama-C static analyzer plug-ins via registered Server
requests.

Notice that since the very beginning of the project 6 years ago, some design
choices have evolved, because of the technical evolutions of the frameworks over
the years; and also to fix some wrong early design choices.

3 The Frama-C Server Plug-in

The Server plug-in extends the Frama-C platform by providing to every other
plug-in a central way to register Asynchronous Typed Requests, without any

6 Loic Correnson

knowledge on how the server will be actually connected to external clients. The
requests are entirely written in OCaml, in the same programming environment
than any other Frama-C plug-in.

The Server API offers two different kinds of services: (1) a library for Frama-C
plug-ins for writing and registering typed and documented requests; (2) a library
for writing protocols for connecting the server to external clients. Several issues
are addressed and solved by the architecture and design of the Server plug-in,
notably:

— how to reconcile the sequential implementation of most Frama-C analyzers
with the asynchronous requirements of a server connected to an external
GUI environment;

— how to document the collection of requests registered by all Frama-C plug-ins
in a consistent and maintainable way;

— how to ensure that data exchanges between the Server and the Client are
well-typed, despite the fact that both programs might be developed in dif-
ferent programming languages;

— how to extend the server capabilities by implementing new communication
protocols via external plug-ins of Frama-C.

We will present in this section the design of the Frama-C/Server plug-in and
how it provides a solution to those issues. This plug-in has been open-sourced
since the Frama-C v20.0 (Calcium, Dec. 2019) official release and is still in active
development, although its API is quite stable.

3.1 The Request System

A discipline existing since the beginning of Frama-C is that any static analyzer
shall regularly invoke a specific function, now called Db.yield(). In the main-
stream Frama-C GUI, this function is used to periodically give an opportunity
for GTK to handle user events. This is a well-known technique for implementing
Cooperative Threads without writing the entire code of a static analyzer in any
lightweight thread framework such as OCaml/Lwt.

The Server takes benefit from this old discipline to offer a similar mechanism
to connected clients: each time the Db.yield function is invoked by a static
analyzer, the server will give a chance to requests to be answered. However,
the difficulty is to not interleave requests that might modify a static analyzer
semantics while it is running.

To this end, the Server plug-in offers different kinds of requests in order to
reconcile the synchronous behavior of static analyzers with asynchronous re-
quests from external clients. Notice that all requests are initiated by the Client,
whatever their kind:

— GET requests are meant to be very quick to compute; they can be answered at
any time, even when a static analyzer is running, typically on Db.yield calls;
they shall not modify the semantics of the static analyzer computations.

Ivette: a Modern GUI for Frama-C 7

— SET requests are meant to perform analyzer configuration; they will be
treated between static analyzer runs, hence not by Db.yield calls.

— EXEC requests are reserved for launching computations of static analyzers,
which cannot be interleaved with each other and must be run in sequence.
Handlers of EXEC requests are responsible for calling Db.yield periodically.

When registering a new request of some kind in the server, each plug-in is
responsible for obeying the associated constraints listed above. A request actually
consists of the following elements:

— the request package and name;

— a markdown documentation snippet;

— the request kind: GET, SET or EXEC;

— a module with signature Input for decoding the input parameters;

— a module with signature Qutput for encoding the output responses;

— the function, with type Input.t -> Output.t, responsible for answering the
request.

The parameter and returned module signatures are two variants of a more
general Value signature illustrated below:

module type Value =
sig
type t
val jtype : jtype
val of_json : json -> t (* only for Input *)
val to_json : t -> json (* only for Output *)
end

The OCaml type jtype encodes JSON types, which are a simplified version of
JSON Schemas. Here is an illustrative extract from its definition:

type jtype =
Jnull | Jnumber | Jstring | Jlist of jtype |
The Server plug-in offers a rich library for building and combining Input and

Output modules. One can also declare named types whose documentation will
be added to the request documentation.

3.2 Generic Server and Protocols

The Server plug-in provides a generic function to create a server. This function
must be instantiated with a fetching function having the following (simplified)
signature:

type ’a message = {
requests : ’a request list ;
callback : ’a response list -> unit ;
X
val Server.Main.create :
fetch: (unit -> ’a message option) -> server

8 Loic Correnson

The fetch function is responsible for interacting with the external Client;
it decodes its data into some optional message. A message consists of a list of
input requests, together with a callback to send responses back to the client.

A very important difference between the protocol function and the plug-in
request interface is that requests and responses are not associated in the same
way. From the protocol point of view, each message consists of a list of request
inputs (n, f,z) where n is some request identifier (of type ’a), f the request
name and z its JSON parameter; response messages will consist of pairs (n,y)
where n is the identifier of some request from any of the previously received
messages, and y = f(z) the output JSON value resulting from processing the
request (n, f,x) identified by n.

Hence, from the Client perspective, the Server is fed with requests and replies
with (some of) the available responses of past requests. It is the responsibility of
the Client to re-associate responses to requests pairwise and to poll the server
by (possibly empty) messages until all responses are fetched back.

The current release of the Frama-C/Server plug-in comes with three server
protocol implementations usable out-of-the box:

— SocketServer: based on UNIX system sockets;

— ZmgServer: based on the ZeroMQ [13] well-known library?;

— BatchServer: this server reads static requests from JSON files and prints
the responses to the terminal; this server is used for implementing unit tests
for requests registered by Frama-C plug-ins. This protocol can also be used
as it is for just scripting Frama-C plug-ins.

3.3 Extended Requests Features

In addition to the low-level GET, SET and EXEC requests depicted so far, the
Server plug-in also offers more elaborated features that reveal to be very useful
and intensively used in practice.

First, the Server implements Signals that can be used to tell the Client that
something happened during a static analyzer computation. In order to save data
in message exchanges, signals are only sent when the Client explicitly asks to
receive them (by message type). Hence, protocol messages are extended with
signal-specific requests and responses. Optionally, it is possible to associate sig-
nals to requests: hence the Client can be informed to re-issue requests when their
associated signals are emitted.

Second, the Server plug-in provides so-called Synchronized Values which are
used to automatically mirror any Frama-C internal state to the Client. Synchro-
nized values simply consist of a combination of three basic ingredients: a GET
request for reading the current value of the state, a SET request for updating the
state, and a dedicated SIGNAL for signaling state updates to the Client.

Finally, the Server plug-in provides so-called Synchronized Arrays which are
used to automatically mirror large collections of values between the Server and

! ZeroMQ has been notoriously used for the CERN Large Hadron Collider

Ivette: a Modern GUI for Frama-C 9

the Client. This is a generalization of synchronized values, with optimizations in
order to scale for huge collections: the Client is able to ask only for a limited
range of records in the collection, and the Server will only send updates of the
collection from what has already been sent in the past.

3.4 Client Side Facilities

The Server plug-in provides also facilities for building Clients.

First, the Server plug-in is capable of generating an HTML documentation
of all the registered requests, with their kind, input and output JSON types and
general documentation, from all the data provided programmatically by plug-ins
when registering their requests into the server.

Second, the Server plug-in offers an API to programmatically browse the
available requests with their type. This can be used to automatically generate
well-typed JSON decoders and encoders for all requests. Typically, for the pur-
pose of the Ivette GUI for Frama-C, we have developed a Frama-C plug-in that
generates a strongly typed TypeScript module for each request registered in the
Server plug-in. This way, lvette GUI code can be type-checked with respect to the
actual type of each request parameter and returned value, despite their low-level
encoding into raw JSON data.

4 Reactive Programming with ReactJS

Although HTML5 engines are extremely powerful for their graphical render-
ing capabilities, developing in JavaScript and hacking the DOM object model is
definitely unmaintainable for a large project.

4.1 The Language Perspective

From the language perspective itself, we decided to migrate from JavaScript to
TypeScript in the middle of the project, just because non-typed languages can
not resist refactoring: even minor API changes can simply not be tracked over
any code base, even small ones! However, we must also mention that TypeScript
comes with its own pitfalls. Namely, we have often and painfully experienced
that open record typing is indeed a terrible mistake: despite being an appealing
feature to deal with optional record fields, it hides all bugs caused by misspelled
or renamed fields! Combined with polymorphic type inference, this makes such
bugs very difficult to investigate and fix.

Despite those difficulties, the TypeScript ecosystem is very mature, with a
lot of existing type-annotation bindings available for many popular JavaScript
libraries. This is a very important requirement since we need to build upon
powerful existing libraries with relatively large APIs.

The lack of available bindings for state-of-the-art JavaScript libraries is one
reason for not choosing another language with a better type system than Type-
Script, e.g. the promising ReScript [14] project. However, we still envision to

10 Loic Correnson

change the base language of our GUI in the future when bindings will not be
a pain: even if it is a large amount of work, type safety will always make the
difference.

4.2 Beyond the Model-View-Controller Paradigm

At the beginning of the lvette project, the ReactJS [12] framework was becoming
very popular for building HTML5 applications. This framework actually induced
disruptive directions for thinking the architecture of applications, which makes
GUI development just scale far beyond the traditional Model-View-Controller
architectural pattern.

The following code snippet is an idiomatic example of ReactJS usage:

function Dlist(props) {
const [N,setN] = React.useState(props.size);

return (
<div>
<button label="+" onClick={() => setN(N+1)}/>;
<button label="-" onClick={() => setN(N-1)}/>;
{(new Array(N)).map((_,k) => <div>Item #{k}</div>)}
</div>
)3

}

In this very simplified example, we define a new component named Dlist. The
component defines a local state and, from its current value, it builds a non-trivial
subtree of components, namely two buttons for updating the state and a number
of items depending on the current state. Once defined, this new component can
be mixed with any other standard HTML5 markup, e.g. <Dlist size={4} />
; the entire application window is built in this way.

This toy example illustrates the fundamental concept of React: the entire
application window is a purely functional projection of the application’s internal
states, organized into components that are function closures that recursively
build entire subtrees of the graphical DOM model. We now briefly comment the
important terms of this statement.

Purely Functional: any React component, like the toy component <Dlist/>
above, are functions that take HTML5 markup properties and render a
subtree of HTML5 or Component markups. Hence, components become
first-order citizens of the host language, like any other function closure. As
such, they can be computed, stored, duplicated, partially applied and passed
to other functions or components as arguments. This allows for, typically,
dynamically generating entire parts of an application from both data and
events.

Internal States: ReactJS comes with so-called Hooks [15], like the useState()
function in the previous example. This standard hook provides the simplest
possible internal state: a variable N initialized with the property size of

Ivette: a Modern GUI for Frama-C 11

the D1ist component; this state comes with an update function setN() for
updating the state in response to any HTML5 or programmatic events via
callbacks. The developer can also create its own hooks by combining existing
ones.

Components Subtree Updates: each time an application internal state is
modified via hooks, React knows that the associated component has to be
updated; this is eventually done by running again the rendering functions of
each of the impacted components, and updating the concrete DOM accord-
ingly. The magic and power of React)S actually lies in the amazing diffing
algorithms involved in this dynamically updating process.

Compared to the classical Model-View-Controller paradigm, we have expe-
rienced that the main disruptive innovations that make the difference are the
following ones:

— The Model concept is simplified by user-defined internal states powered by
hooks, which are actually part of and local to each component, together with
their associated callbacks.

— The View part of the paradigm has been extended to recomputing entire
subtrees of the application graphical components, not only individual com-
ponents.

— Finally, the Controller part of the paradigm comes almost for free: the man-
agement of component creation, deletion and layout are left to the underlying
frameworks. Thanks to HTML5 and CSS layout capabilities this saves a huge
amount of code compared to classical frameworks such as GTK.

Combined all-together, those major innovations allow GUI development to
just scale for large projects. We have experienced roughly an order of magnitude
reduction of the code complexity: for n components connected with each other
in the GUI, the code grows in O(n) complexity within ReactJS-like frameworks,
whereas it reaches O(n?) complexity within GTK-like frameworks.

Last but not least, we shall also mention two really amazing features powered
by the JavaScript environment: the first one comes from the Chromium engine
embedded inside Electron, which offers a rich collection of debugging facilities for
HTMLS5, and also direct support for ReactJS components and hooks; the second
one comes from the JavaScript hot-loading features with ReactJS support, which
actually allows developers to live edit their code: you see what you code in real
time, with live interactions on your data! Compared to a traditional compile-link-
and-restart-your-analysis-to-fiz-your-app cycle of development, live-code editing
provides incredibly faster development cycles.

4.3 A Quick Overview of Ivette’s Hooks

For the purpose of the Ivette graphical user interface, we have typically im-
plemented a collection of hooks dedicated to data exchanges with the Frama-
C/Server presented in Section 3. For instance, given a request rq, one simply
uses the following Hook for interacting with Frama-C:

12 Loic Correnson

const result = FramaC.Server.useRequest(rq, params);

The hook then automatically re-emits the request rq to the server each time
the parameters params are modified or associated signals are emitted, including
server shutdowns and restarts; server responses are then automatically collected
and push to the useRequest () internal state, which will eventually make the
associated components to be automatically updated.

Frama-C states and arrays (Cf. Section 3.3) also benefit from dedicated React
hooks that make them automatically mirrored on demand inside the code of GUI
components. The Ivette middleware actually uses internal sophisticated cache
mechanisms to make all this machinery very efficient: communication between
the GUI part and the Server part is super simple and smooth.

5 The Dome GUI Framework

The Electron [11] framework handles a lot of features regarding system inte-
gration and cross-platform deployment of a desktop application. However, its
Chromium engine is a generic HTML5 engine agnostic w.r.t the web or desktop
application it is actually running. It is entirely the responsibility of the develop-
ers to confer an appealing and consistent look & feel to their applications.

On another hand, there exists a huge amount of libraries available in the
JavaScript community that provide interesting CSS style sheets and collections of
basic components. However, they are often incomplete and complementary with
each other. What is absolutely missing is a collection of all-in-one desktop app
components designed for large real projects. This contrasts with “old-fashioned”
frameworks like GTK, where you only have components consistent with each
other, but it is hardly possible to create new graphical components with complex
behavior, compared to the flexibility of HTML5.

Hence, we started to develop a library named Dome that consists of carefully
designed and themed React components for building great desktop applications.

This Dome library has been designed to be re-used for User Interface projects
outside lvette/Frama-C. It is meant to be developed and maintained by GUI ex-
perts that might have zero knowledge about static analyzers and formal methods.
Currently, it is still under active development driven by the lvette needs, although
we envision to open-source Dome as an independent project on a midterm basis.
Here follows an overview of the already useful features currently available in
Dome:

Command Line Integration: The desktop application is ready to also sup-
port command-line invocations.

User Settings: The application has built-in support for user preferences, with
per-user scope and/or project scopes. Most Dome widgets have built-in sup-
port for storing their state in user settings.

Dark & Bright Themes: The desktop application supports theming w.r.t to
system user settings.

Ivette: a Modern GUI for Frama-C 13

Themed Widgets: Basic components (buttons, labels, checkboxes, icons, etc.)
come with a consistent look & feel and consistent API.

Layout Widgets: Flexible layout containers, such as boxes, draggable split-
ters, grids, toolbars, sidebars, foldable panels, etc. with user settings support
when relevant.

Icon Library: A consistent, extensible, collection of open-sourced SVG icons
that do not depend on the underlying platform (necessary for documenting
cross-platform apps).

Forms Widgets: A library for building hierarchical forms with support for
dynamic form validation.

Hooks Library: A collection of useful React hooks to deal with events, timers,
promises, etc.

JSON Library: A set of parsing operators for safely decoding JSON data in a
typed way. This is typically used for User Settings, but revealed to be also
useful type-safe protocol implementation such as the one of Frama-C/Server.

Drag & Drop Facilities: A library based on react-draggable [16] compo-
nents, which offers ready-to-use Drag Source and Drop Target containers
and the necessary controllers that ease the development of Drag & Drop
features, which are well known to be difficult to implement. The underlying
react-draggable library is also widely used throughout Dome.

Text & Code Editors: A library for working with large text data with arbi-
trarily nested semantic tags and dynamic tag highlighting. Largely based on
the awesome CodeMirror [17] (v5) library, we still had to package it specifi-
cally to scale for very large texts within the ReactJS framework. Managing
nested semantic tags and efficient dynamic tag highlighting typically required
to hack directly with the DOM in cooperation with low-level features of the
CodeMirror APL.

Dynamic Tables: A library to efficiently deal with huge, filtered, sorted, dy-
namically loaded and updated tables. The library offers rich classes for man-
aging the table model and customizable table views with smooth user inter-
action. The table views is built upon the react-virtualized [18] library,
which offers efficient rendering of virtually infinite data sets with shadowing
techniques.

6 Ivette: a Static Analyzer oriented Interface

As a graphical user interface for the Frama-C static analyzers, Ivette has some
specific design orientations that, in our opinion, can be transposed to other static
analyzers. The main Ivette window is organized around into a central mosaic of
components the user can rearrange, picking available components from a library
panel. Predefined views are also made available by Frama-C developers, and the
user can also create and register their own ones.

However, all these components are not independent of each other. Consider
for instance the AST component, which is responsible for rendering the abstract
syntax tree of a C function after typing and normalization by the Frama-C kernel.

14 Loic Correnson

Each node of the syntax tree (variable, expression, statement, etc.) is associated
to unique tags. The user intuitively expects that all other Ivette components
will synchronize with the currently selected tag from the AST. Conversely, the
user selecting an alarm emitted from the Property panel wants the AST to scroll
to the origin of the alarm.

Hence, Ivette not only consists of independent components, but also consists
of shared selection states. Currently, we have: (1) a shared (multiple) seman-
tic tag selection state, with saved and navigable history; (2) a volatile shared
semantic selection associated with mouse hover moves: each time the mouse is
hovering something associated with a semantic tag, all other components can
dynamically adjust their rendering.

Such a simple feature can be seen as anecdotal at first sight. However, it
ends up greatly contributing towards a smooth user experience. Actually, there
is always a tension when providing complex data to the user: if you provide all the
available data regarding the current selection, it might clutter the limited area
available to each component inside the user window. Instead, you can display
a short summarized portion of the data and let the user hover this summary
with the mouse, then display more detailed information for each hovered part,
typically inside another dedicated component. An example of such a behavior is
the Inspector component, which always displays a brief collection of information
(that every Frama-C plug-in can extend directly via the Server services) related
to all currently selected tags, but also for the currently hovered tag. This turns
out to be much more comfortable for the user than, say, pop-up windows. And
ReactJS is fast enough to make such a dynamic behavior very smooth.

We currently have a few basic components available for lvette, mainly dedi-
cated to the Frama-C/EVA abstract interpretation analyzer, that reproduce and
enhance the features that were available for this plug-in from the mainstream
frama-c-gui. We intend to add more components in a near future, namely for
the Frama-C/WP deductive verification analyzer.

Some very new experimental components are also available that we could not
have implemented easily inside the mainstream GTK interface: (1) an interactive
exploration of the graph of EVA imprecision sources, namely the Frama-C/Dive
plug-in; and (2) a dynamic pivot table data extraction of kernel and EVA re-
sults. Ivette has been open-sourced with the Frama-C v25 (Vanadium, June 2022)
release.

As a general feedback from developers that contributed to the work described
above, it seems that our Dome and the lvette environments allows, even for non-
GUI experts, to quickly experiment with new interaction techniques and complex
data raveling.

7 Feedback and Future Work

We started to deploy experimental versions of Ivette with a few industrial and
institutional partners. Initial feedback is very encouraging despite the few Frama-
C components currently available. From a developer point of view, the lvette

Ivette: a Modern GUI for Frama-C 15

platform offers a very exciting and efficient environment for developing static
analyzer components.

Future work will mainly focus on the development of new Frama-C compo-
nents inside lvette. We are also preparing the Dome framework for open sourcing.
We want to extend the Dome framework with 2D and 3D graph capabilities, and
to design components for authoring User Documentation directly from the GUL
There is also a need for Dome applications to support external plug-ins, in order
to have dynamically installed lvette extensions.

Another interesting direction to explore is to design Frama-C/Server protocols
for other external User Environments, for instance a Language Server Protocol
implementation.

8 Conclusion

To overcome the technical and design limitations of the mainstream graphical
user interface of Frama-C, we have designed a radically different platform named
Ivette. Thanks to modern technologies, namely HTML5 and CSS engines, and
with the support of the disruptive Reactive Programming framework provided
by ReactlJS, we have successively reached most of our objectives.

Moreover, we managed to dispatch the necessary expertise in User Interfaces
and Static Analyzers among different people: developers with strong GUI skills
are dedicated to the development of Dome rich components; Frama-C developers
with basically no GUI skills can still perform the hard work of implementing all
necessary semantic data processing via Frama-C/Server requests without leaving
the standard Frama-C environment; finally, those who are interested in develop-
ing new Static Analyzer GUI components can play with the Dome and lvette
environments without being GUI experts, while still producing in the end pro-
fessional user interfaces for their favorite static analyzers.

The architectural design we have introduced is totally general and not depen-
dent on Frama-C internals. The design of the Server component can be transposed
to any other static analysis tool and the Dome framework can be re-used for the
development of any other scientific Desktop application.

Interestingly enough, some considerations on programming language traits
have been exposed and compared with each other. It is also noticeable that such
a large project can not be conducted without the support of communities and
open-source tools that are far beyond the capabilities of isolated research teams.
We sincerely hope that this experience and feedback report will help people in the
community of Formal Methods to design and build a new (hyping!) generation
of Static Analyzer Graphical User Interfaces.

Acknowledgements: my very special thanks to Michele Alberti, Allan Blan-
chard, Francois Bobot, David Biihler, Maxime Jacquemin, André Maroneze,
Valentin Perrelle and Virgile Prevosto for their support, valuable insights
and direct contributions to this project.

16

Loic Correnson

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Baudin, P., Bobot, F., Biihler, D., Correnson, L., Kirchner, F., Kosmatov, N.,
Maroneze, A., Perrelle, V., Prevosto, V., Signoles, J., Williams, N.: The dogged
pursuit of bug-free ¢ programs: The frama-c software analysis platform. Commun.
ACM 64(8) (jul 2021) 56-68

. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:

Frama-c: A software analysis perspective. In: Proceedings of the 10th International
Conference on Software Engineering and Formal Methods. SEFM’12, Springer-
Verlag (2012) 233-247

Creuse, L., Dross, C., Garion, C., Hugues, J., Huguet, J.: Teaching deductive
verification through frama-c and spark for non computer scientists. In Dongol, B.,
Petre, L., Smith, G., eds.: Formal Methods Teaching, Cham, Springer International
Publishing (2019) 23-36

Souaf, S., Loulergue, F.: Experience report: Teaching code analysis and verification
using frama-c. Electronic Proceedings in Theoretical Computer Science 349 (nov
2021) 69-75

Dubois, C., Prévosto, V., Burel, G.: Teaching Formal Methods to Future Engi-
neers. In Dongol, B., Petre, L., Smith, G., eds.: Third International Workshop and
Tutorial, FMTea. Volume 11758 of Formal Methods Teaching., Porto, Portugal,
Springer (September 2019) 69-80

Many contributors: Frama-C publications on external plug-ins. https://frama-c.
com/html/publications.html#external

Shankar, S., Pajela, G.: A tool integrating model checking into a ¢ verification
toolset. In Bosnacki, D., Wijs, A., eds.: Model Checking Software, Cham, Springer
International Publishing (2016) 214-224

Karpman, P.: Building up on SIDAN: improved and new invariants for a software
hardening Frama-C plugin. Master’s thesis, Supélec, équipe Cidre (June 2012)
Brahmi, A., Carolus, M.J., Delmas, D., Essoussi, M.H., Lacabanne, P., Lamiel,
V.M., Randimbivololona, F.; Souyris, J., SAS, A.O.: Industrial use of a safe and
efficient formal method based software engineering process in avionics. Embedded
Real Time Software and Systems (ERTS 2020) (2020)

Djoudi, A., Hana, M., Kosmatov, N.: Formal verification of a javacard virtual
machine with frama-c. In Huisman, M., Pasdreanu, C., Zhan, N., eds.: Formal
Methods, Cham, Springer International Publishing (2021) 427-444

The OpenJS Foundation: Electron, building desktop applications with HTML,
JavaScript and CSS. https://www.electronjs.org

Facebook: React, a JavaScript library for building user interfaces. https:
//reactjs.org

The ZeroM(Q Authors: ZeroMQ, an open-source universal messaging library.
https://zeromq.org

Project, T.R.: Fast, simple, fully typed javascript from the future. https://
rescript-lang.org

Facebook: React Hooks at a glance. https://reactjs.org/docs/hooks-intro.
html

Matt Zabriskie et al.: React-Draggable, a simple component for making elements
draggable. https://github.com/react-grid-layout/react-draggable

Marijn Haverbeke et al.: CodeMirror, an extensible code editor. https://
codemirror.net/5/

Brian Vaughn et al.: React-Virtualized, react components for efficiently rendering
large lists and tabular data. https://github.com/bvaughn/react-virtualized

