
Advanced ACSL and WP tutorial

Virgile Prevosto

April 25th, 2013



Basic contract

I requires

I ensures

I assigns

I validity of pointers
I bounds of arithmetic values



Behaviors

I Specification by cases
I the subdomain is defined by assumes clause
I can give additional constraints with local requires clauses
I the behavior’s postcondition is defined by
ensures, assigns clauses

I complete behaviors states that given behaviors cover
all cases

I disjoint behaviors states that given behaviors do not
overlap



Loop invariants - some hints

How to find a suitable loop invariant? Consider two aspects:
I identify locations modified in the loop

I define their possible value intervals (relationships) after k
iterations

I use loop assigns clause to list variables that (might)
have been assigned so far after k iterations

I identify realized actions, or properties already ensured by the
loop

I what part of the job already realized after k iterations?
I what part of the expected loop results already ensured after k

iterations?
I why the next iteration can proceed as it does? . . .

A stronger property on each iteration may be required to prove
the final result of the loop.



Logic functions and predicates

I can be defined directly or through axioms
I may be parameterized by one (or more) program states:
predicate foo{L}(int* a) = \at(*a,L) == 0;

I \at(\cdot,L) can be omitted if there is no ambiguity
(exactly one state in context).

I this is what was done until now
I can be completed by additional lemmas



Separation

\separated(loc_1,loc_2,...,loc_n) expresses the fact
that loc_1, loc_2, loc_n are disjoint blocks of memory.



code annotations

I Can be specialized for a given behavior:
for b1,b2: assert \true;

I Will be proved under the assumes of the behavior(s)
I But will also only be used for the ensures of the behavior(s)


