
Code analysis with Frama-C Value Analysis
Stance Training Session – Course 1

Virgile Prevosto

March 28th, 2013



Outline

Introduction

Abstract domains
Arithmetic
Memory

Methodology
Basic commands
Parameters

Extensions



Introduction

Value Analysis Plugin

Credits
I Pascal Cuoq
I Boris Yakobowski
I A few other developers...

More information
I http://frama-c.com/download/
frama-c-value-analysis.pdf

I http:
//blog.frama-c.com/index.php?tag/value

I http:
//blog.frama-c.com/index.php?tag/skein

http://frama-c.com/download/frama-c-value-analysis.pdf
http://frama-c.com/download/frama-c-value-analysis.pdf
http://blog.frama-c.com/index.php?tag/value
http://blog.frama-c.com/index.php?tag/value
http://blog.frama-c.com/index.php?tag/skein
http://blog.frama-c.com/index.php?tag/skein


Introduction

Main Objective

Find the domains of the variables of a program
I based on abstract interpretation
I alarms on operations that may be invalid
I alarms on the specifications that may be invalid
I Correct: if no alarm is raised, no runtime error can occur
I can also be used in interpreter mode



Introduction

Some specificities

I Precise handling of pointers
I Several representation for dynamic allocation (precision vs.

time)
I GUI: can show possible values of any location at any

program point.
I time and memory efficient (as much as achievable)
I Precise enough

I for proving absence of runtime errors on some critical code
I to serve as a back-end for other semantical analyzes through

its API



Abstract domains
Arithmetic

Integer and Floating Point Arithmetic

Corresponding Abstract Domain
small set of integers (by default, cardinal ≤ 8)

] integer interval × modulo information
] finite floating-point interval

Examples
I {0; 40; } = 0 or 40
I [0..40] = an integer between 0 and 40 (inclusive)
I [-..-] = any integer (within the bound of the

corresponding integral type)
I [3..39], 3%4 = 3, 7, 11, 15, 19, 23, 27, 31, 35 or 39
I [0.25..3.125] = floating-point between 0.25 et 3.125

(inclusive)



Abstract domains
Memory

Memory Address

Base Address
Global variable
] Formal parameter of main function
] literal string constant
] NULL
] . . .

Addresses
I Base address ⇀ arithmetic value
I Fonctional abstract domain
I Equivalent to an associative map
I can be used as a rvalue for any type
I Pointer to integer cast will loose precision



Abstract domains
Memory

Examples of Addresses

Precise Base
I {{&p + {4; 8}}} = address of p shifted from 4 or 8 octets
I {{&”foobar”; }} = Address of literal string "foobar" (shifted

from 0)
I {{&NULL + {1024; }}} = Absolute location 1024

Imprecision
I garbled mix of &{x1; . . . ; xn} = unknown address built

upon arithmetic operations over integers and addresses
x1; . . . ; xn.

I ANYTHING = top of the lattice. Should not occur in practice



Abstract domains
Memory

Write to an Address

Abstract Domain
written address = valid left value

adress
× initialized?
× not dangling pointer?

Exemple
{

int x,y;
if (e) x = 2;

L: if (e) y = x + 1;
}

I At L, we know that x equals 2 iff it has been initialized
I Depending on the complexity of e, we know that y equals 3

if x equals 2



Abstract domains
Memory

Concrete Memory

I Seen as big array of bits
I read/write a value v at address i = read/write v at index i

over n bits.
I n depends upon the type of v
I potential overlap
I example: x .a extends over n bits, x .b over m bits. Writing at

x .a over p bytes with n < p < m will partially erase x .b

· · · · · ·memory

x .a x .b x .c

n bits m bits
p bits



Abstract domains
Memory

Contiguous Memory Zones

offsetmap = interval ⇀ value

Exemple
First 32 bits contain address of x , next 16 contain 12.

[0..31] 7→ {{&x (initialized, not dangling)}}
[32..47] 7→ 12

Remark
I Integers and pointers share the same representation
I Values in memory can be integers
I 12 , NULL 7→ 12 (initialized, not dangling)



Abstract domains
Memory

Abstract Memory State

base address ⇀ offsetmap

Example
S 7→ { [0..31] 7→ {&x 7→ 0 (initialized, not dangling)}

[32..47] 7→ {NULL 7→ 12 (initialized, not dangling)} }
x 7→ { [0..31] 7→ {NULL 7→ {3; 24} (initialized, not dangling)} }

Displaying Values
I Expected type is used to display values

Exemple
S.mypointer ∈ {{&x}}

.myshort ∈ 12
x ∈ { 3; 24 }



Abstract domains
Memory

Abstract Memory and Overlapping

int c,x;
char t[6];

void test(void) {
t[0] = c ? 1 : 2;

*(int*)(t+1) = c ? 3 : 4;

*(t+3) = 5;
x = *(int*)(t+1);
}



Methodology
Basic commands

Main options

I -main: specifies the entry point of the analysis (default:
main function)

I -lib-entry: Library mode: globals are not assumed to be
0-initialized

I -val: launch value, starting at the specified entry point

abs.c

int R;
void abs(int x) {

R = x >= 0 ? x : -x;
}

I frama-c -main abs -val -lib-entry abs.c



Methodology
Parameters

Automation

Is abstract interpretation an automated plug-in?

I yes...
I and no!
I must be driven carefully to give meaningful results
I requires some expertise and some time



Methodology
Parameters

Another example

simple.c (frama-c -val simple.c)

int S=0;

int T[5];

int main(void) {
int i;
int *p = &T[0] ;
for (i = 0; i < 5; i++) {

S = S + i; *p++ = S;
}
return S;

}



Methodology
Parameters

Get feedback from Value Analysis

I with the GUI
I with Frama_C_show_each_test(...)
I with Frama_C_dump_each()



Methodology
Parameters

Help Value Analysis to Understand the Code

I Pay attention to missing code (external library) or code that
is not understood (asm)

I write C code (stub), that can be understood by Value and
approximates the missing part well enough with respect to the
desired property

I give an ACSL specification

I Give an appropriate context
I Write an appropriate entry point to initialize global variables

and formal parameters
I Sometime possible to use dedicated options (-context-∗)



Methodology
Parameters

Enhance precision

Loops
I option -ulevel: syntactic loop unrolling
I option -slevel: allows Value to explore n separated paths

before joining them
I option -wlevel: number of loop steps before performing

widening (default is 3, use with caution)
Driving Value through Annotations

I ACSL assertions can be used to restrict propagated domains
I but only if Value can interpret it

/*@ assert x % 2 == 0; */
// potentially useful
/*@ assert \exists integer y; x == 2 * y; */
// useless

I Case analysis using disjunctions



Extensions

Plugins based on Value

I Lightweight Analyzers
I Call graphs
I Constant propagation
I Occurrence

I Side Effects and Dependencies
I Functional dependencies
I Imperative effects
I Operational effects
I Scope of assignments

I Code specialization
I Slicing
I Sparecode
I Impact


	Introduction
	Abstract domains
	Arithmetic
	Memory

	Methodology
	Basic commands
	Parameters

	Extensions

