
Frama-C WP Tutorial

Virgile Prevosto, Nikolay Kosmatov and Julien Signoles

June 11th, 2013



Motivation

Main objective:
Rigorous, mathematical proof of semantic properties of a program

I functional properties
I safety:

I all memory accesses are valid,
I no arithmetic overflow,
I no division by zero, . . .

I termination
I . . .



Our goal

In this tutorial, we will see
I how to specify a C program with ACSL
I how to prove it automatically with Frama-C/WP
I how to understand and fix proof failures



Presentation of Frama-C
Context
First steps
Frama-C plugins

Basic function contract
A little bit of background
ACSL and WP
Specifying side-effects

Loops
Background
Loop invariants in ACSL
Loop termination

Advanced contracts
Behaviors
User-defined predicates



Presentation of Frama-C
Context
First steps
Frama-C plugins

Basic function contract
A little bit of background
ACSL and WP
Specifying side-effects

Loops
Background
Loop invariants in ACSL
Loop termination

Advanced contracts
Behaviors
User-defined predicates



Presentation of Frama-C
Context

A brief history

I 90’s: CAVEAT, an Hoare logic-based tool for C programs at
CEA

I 2000’s: CAVEAT used by Airbus during certification process
of the A380 (DO-178 level A qualification)

I 2002: Why and its C front-end Caduceus (at INRIA)
I 2006: Joint project to write a successor to CAVEAT and

Caduceus
I 2008: First public release of Frama-C (Hydrogen)
I 2010: start of Device-Soft project between Fraunhofer FIRST

(now FOKUS) and CEA LIST
I today:

I Frama-C Fluorine (v9)
I Multiple projects around the platform
I A growing community of users
I and of plug-ins developers



Presentation of Frama-C
Context

Frama-C at a glance

I A framework for modular analysis of C code.
I http://frama-c.com/

I Developed at CEA LIST and INRIA Saclay (Proval, now
Toccata team).

I Released under LGPL license (Fluorine v1/v2 in April-May)
I Kernel based on CIL (Necula et al. – Berkeley).
I ACSL annotation language.
I Extensible platform

I Collaboration of analysis over same code
I Inter plug-in communication through ACSL formulas.
I Adding specialized plug-in is easy

http://frama-c.com/


Presentation of Frama-C
Context

ACSL: ANSI/ISO C Specification Language

Presentation
I Based on the notion of contract, like in Eiffel
I Allows the users to specify functional properties of their

programs
I Allows communication between various plugins
I Independent from a particular analysis
I ACSL manual at http://frama-c.com/acsl

Basic Components
I First-order logic
I Pure C expressions
I C types + Z (integer) and R (real)
I Built-ins predicates and logic functions, particularly over

pointers: \valid(p) \valid(p+0..2),
\separated(p+0..2,q+0..5), \block_length(p)

http://frama-c.com/acsl


Presentation of Frama-C
First steps

Installation

On Linux
I On Debian, Ubuntu, Fedora, Gentoo, OpenSuse, Linux Mint,

...
I Compile from sources using OCaml package managers:

I Godi
(http://godi.camlcity.org/godi/index.html)

I Opam (http://opam.ocamlpro.com/)
On Windows

I Godi
I Wodi (http://wodi.forge.ocamlcore.org/)

On Mac OS X
I Binary package available
I Source compilation through homebrew.

http://godi.camlcity.org/godi/index.html
http://opam.ocamlpro.com/
http://wodi.forge.ocamlcore.org/


Presentation of Frama-C
First steps

Installed files

Executables
I frama-c: Console-based interface
I frama-c-gui: Graphical User Interface

Others
I FRAMAC_PLUGINS: location of plug-ins
I FRAMAC_SHARE: various configuration files
I FRAMAC_SHARE/libc: standard headers



Presentation of Frama-C
First steps

Documentation

Manuals
I http://frama-c.com/support.html

I In directory
$(frama-c -print-share-path)/manuals

I inline help (frama-c -kernel-help,
frama-c -plugin-help)

Support
I frama-c-discuss@gforge.inria.fr

I tag frama-c on http://stackoverflow.com

http://frama-c.com/support.html
mailto:frama-c-discuss@gforge.inria.fr
http://stackoverflow.com


Presentation of Frama-C
Frama-C plugins

Main plug-ins
included in main distribution

distributed externally

Frama-C Plug-Ins

Dynamic Analysis

Executable-ACSL

PathCrawler

SANTE

Concurrency

MthreadSpecification Generation

Agen
Aoraï

Formal Methods

Deductive Verification

WPJessie

Abstract Interpretation

Value Analysis

Code Transformation

Semantic constant folding

Slicing

Spare code

Browsing of unfamiliar code

Scope & Data-flow browsing

Variable occurrences

Impact Analysis

Metrics computation



Presentation of Frama-C
Frama-C plugins

External plugins

I Taster (coding rules, Atos/Airbus, Delmas &al., ERTS 2010)
I Dassault’s internal plug-ins (Pariente & Ledinot, FoVeOOs

2010)
I Fan-C (flow dependencies, Atos/Airbus, Duprat &al., ERTS

2012)
I Simple Concurrency plug-in (Adelard, first release in 2013)
I Various academic experiments (mostly security and/or

concurrency related)



Presentation of Frama-C
Context
First steps
Frama-C plugins

Basic function contract
A little bit of background
ACSL and WP
Specifying side-effects

Loops
Background
Loop invariants in ACSL
Loop termination

Advanced contracts
Behaviors
User-defined predicates



Basic function contract
A little bit of background

Summary

Contracts
Goal: specification of imperative functions

Approach: give assertions (i.e. properties) about the functions
Precondition is supposed to be true on entry

(ensured by callers of the function)
Postcondition must be true on exit (ensured by the

function if it terminates)
Nothing is guaranteed when the precondition is not
satisfied

Termination may or may not be guaranteed (total or partial
correctness)



Basic function contract
A little bit of background

Hoare Logic

/*@ requires R;
ensures E; */

int f(int* x) {

S_1;

S_2;

}

I Hoare Triples:

{P}S{Q}

I Weakest Preconditions:

∀P,(P ⇒ wp(S, Q))
⇒ {P}S{Q}

I Proof Obligation (PO):

R ⇒ wp(Body,E)



Basic function contract
A little bit of background

Hoare Logic

/*@ requires R;
ensures E; */

int f(int* x) {

S_1;

S_2;

/*@assert E; */

}

I Hoare Triples:

{P}S{Q}

I Weakest Preconditions:

∀P,(P ⇒ wp(S, Q))
⇒ {P}S{Q}

I Proof Obligation (PO):

R ⇒ wp(Body,E)



Basic function contract
A little bit of background

Hoare Logic

/*@ requires R;
ensures E; */

int f(int* x) {

S_1;

/*@assert wp(S_2,E); */

S_2;

/*@assert E; */

}

I Hoare Triples:

{P}S{Q}

I Weakest Preconditions:

∀P,(P ⇒ wp(S, Q))
⇒ {P}S{Q}

I Proof Obligation (PO):

R ⇒ wp(Body,E)



Basic function contract
A little bit of background

Hoare Logic

/*@ requires R;
ensures E; */

int f(int* x) {

/*@assert
wp(S_1,wp(S_2,E)); */

S_1;

/*@assert wp(S_2,E); */

S_2;

/*@assert E; */

}

I Hoare Triples:

{P}S{Q}

I Weakest Preconditions:

∀P,(P ⇒ wp(S, Q))
⇒ {P}S{Q}

I Proof Obligation (PO):

R ⇒ wp(Body,E)



Basic function contract
ACSL and WP

A first example

#include " l i m i t s . h "
// returns the maximum of x and y
int max ( int x, int y ) {
if ( x >=y )

return x ;
return y ;

}



Basic function contract
ACSL and WP

WP plug-in

Credits
I Loïc Correnson
I Zaynah Dargaye
I Anne Pacalet
I François Bobot
I a few others

Basic usage
I frama-c-gui -wp file.c

I WP tab on the GUI
I Inspect (failed) proof obligation
I http://frama-c.com/download/wp-manual.pdf

http://frama-c.com/download/wp-manual.pdf


Basic function contract
ACSL and WP

Avoiding run-time errors

Example
// returns the absolute value of x
int abs ( int x ) {
if ( x >=0 )

return x ;
return -x ;

}

Command
I frama-c-gui -pp-annot -wp -wp-rte abs.c

I or use switch directly in GUI



Basic function contract
Specifying side-effects

Dealing with pointers

Example
// returns the maximum of *p and *q
int max_ptr ( int *p, int *q ) {
if ( *p >= *q )
return *p ;

return *q ;
}

Main ingredients
I built-in predicate \valid(...)
I assigns clause



Basic function contract
Specifying side-effects

Setting values

Example
// swap the content of both arguments
void swap(int* p, int* q) {

int tmp = *q;

*q = *p;

*p = tmp;
}



Basic function contract
Specifying side-effects

Function Calls

/*@ requires R_1;
ensures E_1;
assigns A;

*/
void g();

/*@ requires R_2;
ensures E_2;

*/
void f() {

S_1;
g();
S_2;

}

I Contract as a cut
I First PO: f must call g in a

correct context:

R_2 ⇒ wp(S_1,R_1)

I Second PO: State after g has the
desired properties:

∀State,E_1 ⇒ wp(S_2,E_2)

I Must specify effects (Frame rule)

∀x ∈ State\A,g does not change x



Basic function contract
Specifying side-effects

Function Calls

/*@ requires R_1;
ensures E_1;
assigns A;

*/
void g();

/*@ requires R_2;
ensures E_2;

*/
void f() {

S_1;
g();
S_2;

}

I Contract as a cut
I First PO: f must call g in a

correct context:

R_2 ⇒ wp(S_1,R_1)

I Second PO: State after g has the
desired properties:

∀State,E_1 ⇒ wp(S_2,E_2)

I Must specify effects (Frame rule)

∀x ∈ State\A,g does not change x



Basic function contract
Specifying side-effects

Function Calls

/*@ requires R_1;
ensures E_1;
assigns A;

*/
void g();

/*@ requires R_2;
ensures E_2;

*/
void f() {

S_1;
g();
S_2;

}

I Contract as a cut
I First PO: f must call g in a

correct context:

R_2 ⇒ wp(S_1,R_1)

I Second PO: State after g has the
desired properties:

∀State,E_1 ⇒ wp(S_2,E_2)

I Must specify effects (Frame rule)

∀x ∈ State\A,g does not change x



Basic function contract
Specifying side-effects

Function Calls

/*@ requires R_1;
ensures E_1;
assigns A;

*/
void g();

/*@ requires R_2;
ensures E_2;

*/
void f() {

S_1;
g();
S_2;

}

I Contract as a cut
I First PO: f must call g in a

correct context:

R_2 ⇒ wp(S_1,R_1)

I Second PO: State after g has the
desired properties:

∀State,E_1 ⇒ wp(S_2,E_2)

I Must specify effects (Frame rule)

∀x ∈ State\A,g does not change x



Basic function contract
Specifying side-effects

Function Calls

/*@ requires R_1;
ensures E_1;
assigns A;

*/
void g();

/*@ requires R_2;
ensures E_2;

*/
void f() {

S_1;
g();
S_2;

}

I Contract as a cut
I First PO: f must call g in a

correct context:

R_2 ⇒ wp(S_1,R_1)

I Second PO: State after g has the
desired properties:

∀State,E_1 ⇒ wp(S_2,E_2)

I Must specify effects (Frame rule)

∀x ∈ State\A,g does not change x



Basic function contract
Specifying side-effects

Function call: example

#include " l i m i t s . h "
/*@
requires \valid(p) && \valid(q);
ensures \result >= *p && \result >= *q;
ensures \result == *p || \result == *q;
assigns \nothing;

*/
int max ( int* p, int* q );



Basic function contract
Specifying side-effects

Function call: example (cont’d)

/*@
requires \valid(p) && \valid(q);
assigns *x, *y;
ensures *x == \at(*y,Pre);
ensures *y == \at(*x,Pre);

*/
void swap(int* x, int* y);

// ensures that *high contains
// the maximum of the two values.
int max_swap( int* low, int* high ) {

if (*high != max(low,high)) swap(low,high);
}



Presentation of Frama-C
Context
First steps
Frama-C plugins

Basic function contract
A little bit of background
ACSL and WP
Specifying side-effects

Loops
Background
Loop invariants in ACSL
Loop termination

Advanced contracts
Behaviors
User-defined predicates



Loops
Background

Loops

/*@ requires R;
ensures E;

*/
void f() {
S_1;

while(e) { B }
S_2;
}

I Need to capture effects of all
loop steps

I Inductive loop invariant:
I Holds at the beginning (after

0 step). PO is
R ⇒ wp(S_1,I)

I If it holds after n steps, it
holds after n + 1 steps. PO
is ∀State, I ∧ e ⇒ wp(B,I)

I Must imply the
post-condition. PO is
∀State, I ∧ ¬e ⇒ wp(S_2,E)

I Specify effects of the loop:
∀x ∈
State\A,B does not change x



Loops
Background

Loops

/*@ requires R;
ensures E;

*/
void f() {
S_1;

/*@loop invariant I;

*/

while(e) { B }
S_2;
}

I Need to capture effects of all
loop steps

I Inductive loop invariant:
I Holds at the beginning (after

0 step). PO is
R ⇒ wp(S_1,I)

I If it holds after n steps, it
holds after n + 1 steps. PO
is ∀State, I ∧ e ⇒ wp(B,I)

I Must imply the
post-condition. PO is
∀State, I ∧ ¬e ⇒ wp(S_2,E)

I Specify effects of the loop:
∀x ∈
State\A,B does not change x



Loops
Background

Loops

/*@ requires R;
ensures E;

*/
void f() {
S_1;

/*@loop invariant I;

*/

while(e) { B }
S_2;
}

I Need to capture effects of all
loop steps

I Inductive loop invariant:
I Holds at the beginning (after

0 step). PO is
R ⇒ wp(S_1,I)

I If it holds after n steps, it
holds after n + 1 steps. PO
is ∀State, I ∧ e ⇒ wp(B,I)

I Must imply the
post-condition. PO is
∀State, I ∧ ¬e ⇒ wp(S_2,E)

I Specify effects of the loop:
∀x ∈
State\A,B does not change x



Loops
Background

Loops

/*@ requires R;
ensures E;

*/
void f() {
S_1;

/*@loop invariant I;

*/

while(e) { B }
S_2;
}

I Need to capture effects of all
loop steps

I Inductive loop invariant:
I Holds at the beginning (after

0 step). PO is
R ⇒ wp(S_1,I)

I If it holds after n steps, it
holds after n + 1 steps. PO
is ∀State, I ∧ e ⇒ wp(B,I)

I Must imply the
post-condition. PO is
∀State, I ∧ ¬e ⇒ wp(S_2,E)

I Specify effects of the loop:
∀x ∈
State\A,B does not change x



Loops
Background

Loops

/*@ requires R;
ensures E;

*/
void f() {
S_1;

/*@loop invariant I;

*/

while(e) { B }
S_2;
}

I Need to capture effects of all
loop steps

I Inductive loop invariant:
I Holds at the beginning (after

0 step). PO is
R ⇒ wp(S_1,I)

I If it holds after n steps, it
holds after n + 1 steps. PO
is ∀State, I ∧ e ⇒ wp(B,I)

I Must imply the
post-condition. PO is
∀State, I ∧ ¬e ⇒ wp(S_2,E)

I Specify effects of the loop:
∀x ∈
State\A,B does not change x



Loops
Background

Loops

/*@ requires R;
ensures E;

*/
void f() {
S_1;

/*@loop invariant I;
loop assigns A;

*/

while(e) { B }
S_2;
}

I Need to capture effects of all
loop steps

I Inductive loop invariant:
I Holds at the beginning (after

0 step). PO is
R ⇒ wp(S_1,I)

I If it holds after n steps, it
holds after n + 1 steps. PO
is ∀State, I ∧ e ⇒ wp(B,I)

I Must imply the
post-condition. PO is
∀State, I ∧ ¬e ⇒ wp(S_2,E)

I Specify effects of the loop:
∀x ∈
State\A,B does not change x



Loops
Background

Loops: example

// returns a non-zero value iff all elements
// in a given array t of n integers are zeros
int all_zeros(int t[], int n) {

int k;
for(k = 0; k < n; k++)

if (t[k] != 0)
return 0;

return 1;
}



Loops
Loop invariants in ACSL

Loop invariants - some hints

How to find a suitable loop invariant? Consider two aspects:
I identify locations modified in the loop

I define their possible value intervals (relationships) after k
iterations

I use loop assigns clause to list variables that (might)
have been assigned so far after k iterations

I identify realized actions, or properties already ensured by the
loop

I what part of the job already realized after k iterations?
I what part of the expected loop results already ensured after k

iterations?
I why the next iteration can proceed as it does? . . .

A stronger property on each iteration may be required to prove
the final result of the loop.



Loops
Loop invariants in ACSL

Loop invariants - more hints

Remember: a loop invariant must be true
I before (the first iteration of) the loop, even if no iteration is

possible
I after any complete iteration even if no more iterations are

possible
I in other words, any time right before the loop condition check

In particular, a for loop
f o r ( i =0; i<n ; i++) { /∗ body ∗/ }

should be seen as
i =0; // a c t i o n b e f o r e the f i r s t i t e r a t i o n
whi le ( i<n ) // an i t e r a t i o n s t a r t s by the c o n d i t i o n check

{
/∗ body ∗/
i ++; // l a s t a c t i o n i n an i t e r a t i o n

}



Loops
Loop termination

Loop termination

I Program termination is undecidable
I A tool cannot deduce neither the exact number of iterations,

nor even an upper bound
I If an upper bound is given, a tool can check it by induction
I An upper bound on the number of remaining loop iterations

is the key idea behind the loop variant

Terminology
I Partial correctness: if the function terminates, it respects its

specification
I Total correctness: the function terminates, and it respects its

specification



Loops
Loop termination

Loop variants - some hints

I Unlike an invariant, a loop variant is an integer expression,
not a predicate

I Loop variant is not unique: if V works, V + 1 works as well
I No need to find a precise bound, any working loop variant is

OK
I To find a variant, look at the loop condition

I For the loop while(exp1 > exp2 ), try
loop variant exp1-exp2;

I In more complex cases: ask yourself why the loop terminates,
and try to give an integer upper bound on the number of
remaining loop iterations



Presentation of Frama-C
Context
First steps
Frama-C plugins

Basic function contract
A little bit of background
ACSL and WP
Specifying side-effects

Loops
Background
Loop invariants in ACSL
Loop termination

Advanced contracts
Behaviors
User-defined predicates



Advanced contracts
Behaviors

Behaviors

Specification by cases
I Global precondition (requires) and postcondition

(ensures, assigns) applies to all cases
I Behaviors refine global contract in particular cases
I For each case (each behavior)

I the subdomain is defined by assumes clause
I can give additional constraints with local requires clauses
I the behavior’s postcondition is defined by
ensures, assigns clauses

I it must be ensured whenever assumes condition is true
I complete behaviors states that given behaviors cover

all cases
I disjoint behaviors states that given behaviors do not

overlap



Advanced contracts
Behaviors

Using behaviors: example

/* input: a sorted array a, its length,
and a value key to search.
output: index of a cell which contains key,
or -1 if key is not present in the array.

*/
int binary_search(int* a, int length, int key) {
int low = 0, high = length - 1;
while (low<=high) {
int mid = (low+high)/2;
if (a[mid] == key) return mid;
if (a[mid] < key) { low = mid+1; }
else { high = mid - 1; }

}
return -1;

}



Advanced contracts
User-defined predicates

A look a C strings

From C std library
#include " l i m i t s . h "

typedef unsigned int size_t;

void* memcpy(void* dest, void* src, size_t length);

size_t strlen(char* s);

char* strcpy(char *s1, const char* s2);

char *strncpy(char* s1, const char *s2, size_t n);


	Presentation of Frama-C
	Context
	First steps
	Frama-C plugins

	Basic function contract
	A little bit of background
	ACSL and WP
	Specifying side-effects

	Loops
	Background
	Loop invariants in ACSL
	Loop termination

	Advanced contracts
	Behaviors
	User-defined predicates


