
Developer Manual

Plug-in Development Guide
Release Sodium-20150201

Julien Signoles with Loïc Correnson, Matthieu Lemerre and Virgile Prevosto

CEA LIST, Software Reliability Laboratory, Saclay,F-91191

©2009-2013 CEA LIST
This work has been supported by the ANR project CAT (ANR-05-RNTL-00301) and the
ANR project U3CAT (08-SEGI-02101).

Contents

Foreword 9

1 Introduction 11
1.1 About this document . 11
1.2 Outline . 12

2 Tutorial 13
2.1 What a Plug-in Looks Like? . 13
2.2 The Hello plug-in . 13

2.2.1 A Simple Script . 14
2.2.2 Registering a Script as a Plug-in . 15
2.2.3 Displaying Messages . 15
2.2.4 Adding Command Line Options . 16
2.2.5 Writing a Makefile . 18
2.2.6 Testing your Plug-in . 19
2.2.7 Documenting your Source Code . 19

2.3 The CFG plug-in . 19
2.3.1 Visiting the AST . 19
2.3.2 Interfacing with a kernel-integrated plug-in 23
2.3.3 Extending the Frama-C GUI . 23
2.3.4 Plug-In registration and command line options 25
2.3.5 Splitting files and writing a Makefile 26
2.3.6 Getting your Plug-in Usable by Others 29
2.3.7 Writing your Plug-in into the Journal 29
2.3.8 Writing a Configure Script . 29
2.3.9 Getting your plug-in Usable in a Multi Projects Setting 29

3 Software Architecture 33
3.1 General Description . 33
3.2 Cil: C Intermediate Language . 35

5

CONTENTS

3.3 Kernel . 35
3.4 Plug-ins . 36

4 Advanced Plug-in Development 39
4.1 File Tree Overview . 39
4.2 Frama-C Configure.in . 40

4.2.1 Principle . 40
4.2.2 Addition of a Simple Plug-in . 41
4.2.3 Configuration of New Libraries or Tools 41
4.2.4 Addition of Library/Tool Dependencies 42
4.2.5 Addition of Plug-in Dependencies . 43

4.3 Plug-in Specific Configure.in . 43
4.4 Frama-C Makefile . 44
4.5 Plug-in Specific Makefile . 45

4.5.1 Using Makefile.dynamic . 46
4.5.2 Compiling Frama-C and external plug-ins at the same time 46

4.6 Testing . 47
4.6.1 Using ptests . 47
4.6.2 Configuration . 48
4.6.3 Alternative Testing . 49
4.6.4 Detailed options . 50
4.6.5 Detailed directives . 51

4.7 Plug-in General Services . 53
4.8 Logging Services . 53

4.8.1 From printf to Log . 54
4.8.2 Log Quick Reference . 55
4.8.3 Logging Routine Options . 56
4.8.4 Advanced Logging Services . 57

4.9 The Type library: Type Values and Datatypes 59
4.9.1 Type Value . 60
4.9.2 Datatype . 60

4.10 Plug-in Registration and Access . 64
4.10.1 Registration through a .mli File . 64
4.10.2 Kernel-integrated Registration and Access 65
4.10.3 Dynamic Registration and Access . 66

4.11 Journalization . 69
4.12 Project Management System . 69

4.12.1 Overview and Key Notions . 69

6

CONTENTS

4.12.2 State: Principle . 70
4.12.3 Registering a New State . 72
4.12.4 Direct Use of Low-level Functor State_builder.Register 74
4.12.5 Using Projects . 76
4.12.6 Selections . 77

4.13 Command Line Options . 78
4.13.1 Definition . 78
4.13.2 Tuning . 79

4.14 Initialization Steps . 80
4.15 Customizing the AST creation . 82
4.16 Visitors . 83

4.16.1 Entry Points . 84
4.16.2 Methods . 84
4.16.3 Action Performed . 84
4.16.4 Visitors and Projects . 85
4.16.5 In-place and Copy Visitors . 85
4.16.6 Differences Between the Cil and Frama-C Visitors 86
4.16.7 Example . 86

4.17 Logical Annotations . 88
4.18 Extending ACSL annotations . 88
4.19 Locations . 89

4.19.1 Representations . 89
4.19.2 Map Indexed by Locations . 90

4.20 GUI Extension . 90
4.21 Documentation . 91

4.21.1 General Overview . 91
4.21.2 Source Documentation . 91
4.21.3 Website . 92

4.22 License Policy . 92

5 Reference Manual 93
5.1 File Tree . 93

5.1.1 The cil directory . 94
5.1.2 The src directory . 95

5.2 Configure.in . 97
5.3 Makefiles . 98

5.3.1 Overview . 98

7

CONTENTS

5.3.2 Sections of Makefile, Makefile.config.in, Makefile.common and
Makefile.generic . 100

5.3.3 Variables of Makefile.dynamic and Makefile.plugin 103
5.3.4 Makefile.dynamic . 106

5.4 Ptests . 107
5.4.1 Pre-defined macros for tests commands 107

A Changes 109

Bibliography 115

List of Figures 117

Index 119

8

Foreword

This is the documentation of the Frama-C implementation1 which aims to help developers
integrate new plug-ins inside this platform. It started as a deliverable of the task 2.3 of the
ANR RNTL project CAT2.
The content of this document corresponds to the version Sodium-20150201 (March 5, 2015)
of Frama-C. However the development of Frama-C is still ongoing: features described here
may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Patrick Baudin,
Richard Bonichon, Pascal Cuoq, Zaynah Dargaye, Florent Garnier, Pierre-Loïc Garoche,
Philippe Herrmann, Boris Hollas, Nikolaï Kosmatov, Benjamin Monate, Yannick Moy, Anne
Pacalet, Armand Puccetti, Muriel Roger and Boris Yakobowski. We also thank Johannes
Kanig for his Mlpost support3, the tool used for making figures of this document.

1http://frama-c.com
2http://www.rntl.org/projet/resume2005/cat.htm
3http://mlpost.lri.fr

9

http://frama-c.com
http://www.rntl.org/projet/resume2005/cat.htm
http://mlpost.lri.fr

Chapter 1

Introduction

Frama-C (Framework for Modular Analyses of C) is a software platform which helps the
development of static analysis tools for C programs thanks to a plug-ins mechanism.
This guide aims at helping developers program within the Frama-C platform, in particular for
developing a new analysis or a new source-to-source transformation through a new plug-in.
For this purpose, it provides a step-by-step tutorial, a general presentation of the Frama-C
software architecture, a set of Frama-C-specific programming rules and an overview of the
API of the Frama-C kernel. However it does not provide a complete documentation of the
Frama-C API and, in particular, it does not describe the API of existing Frama-C plug-ins.
This API is documented in the html source code generated by make doc (see Section 4.21.1
for additional details about this documentation).
This guide introduces neither the use of Frama-C which is the purpose of the user manual [4]
and of the reference article [8, 14], nor the use of plug-ins which are documented in separated
and dedicated manuals [2, 5, 10, 13, 21]. We assume that the reader of this guide already
read the Frama-C user manual and knows the main Frama-C concepts.
The reader of this guide may be either a Frama-C beginner who just finished reading the user
manual and wishes to develop his/her own analysis with the help of Frama-C, an intermediate-
level plug-in developer who would like to have a better understanding of one particular aspect
of the framework, or a Frama-C expert who wants to remember details about one specific point
of the Frama-C development.
Frama-C is fully developed within the OCaml programming language [15]. Motivations for this
choice are given in a Frama-C experience report [9]. However this guide does not provide any
introduction to this programming language: the World Wide Web already contains plenty
resources for OCaml developers (see for instance http://caml.inria.fr/resources/doc/
index.en.html).

1.1 About this document

To ease reading, section heads may state the category of readers they are intended for and a
set of prerequisites.
Appendix A references all the changes made to this document between successive Frama-C
releases.
In the index, page numbers written in bold italics (e.g. 1) reference the defining sections
for the corresponding entries while other numbers (e.g. 1) are less important references.

11

http://caml.inria.fr/resources/doc/index.en.html
http://caml.inria.fr/resources/doc/index.en.html

CHAPTER 1. INTRODUCTION

Furthermore, the name of each OCaml value in the index corresponds to an actual Frama-C
value. In the Frama-C source code, the ocamldoc documentation of such a value contains
the special tag @plugin development guide while, in the html documentation of the Frama-
C API, the note “Consult the Plugin Development Guide for additional details” is
attached the value name.

The most important paragraphs are displayed inside gray boxes like this one. A plug-in
developer must follow them very carefully.

There are numerous code snippets in this document. Beware that copy/pasting them
from the PDF to your favorite text editor may prevent your code from compiling, because
the PDF text can contain non-ASCII characters.

1.2 Outline

This guide is organised in four parts.

Chapter 2 is a step-by-step tutorial for developing a new plug-in within the Frama-C plat-
form. At the end of this tutorial, a developer should be able to extend Frama-C with a
simple analysis available as a Frama-C plug-in.

Chapter 3 presents the Frama-C software architecture.

Chapter 4 details how to use all the services provided by Frama-C in order to develop a
fully integrated plug-in.

Chapter 5 is a reference manual with complete documentation for some particular points
of the Frama-C platform.

12

Chapter 2

Tutorial

Target readers: beginners.

This chapter aims at helping a developer to write his first Frama-C plug-in. At the end of the
tutorial, any developer should be able to extend Frama-C with a simple analysis available as
a Frama-C plug-in. This chapter was written as a step-by-step explanation on how to proceed
towards this goal. It will get you started but does not tell the whole story. You will get it
with your own experiment, and by reading the other chapters of this guide on need.

First Section 2.1 shows what a plug-in looks like. Then Section 2.2 explains the basis for
writing a standard Frama-C plug-in, while Section 2.3 details how to interact with Frama-C
and others plug-ins to implement analyzers of C programs.

2.1 What a Plug-in Looks Like?

Figure 2.1 shows how a plug-in can integrate with the Frama-C platform. This tutorial focuses
on specific parts of this figure.

The implementation of the plug-in is provided inside a specific directory. The plug-in registers
with the Frama-C platform through kernel-provided registration points. These registrations
are performed through hooks (by applying a function or a functor). For instance, the next
section shows how to:

• extend the Frama-C entry point thanks to the function Db.Main.extend if you want to
run plug-in specific code whenever Frama-C is executed;

• use specific plug-in services provided by the module Plugin, such as adding a new
Frama-C option.

2.2 The Hello plug-in

This simple plug-in explain how to make your plug-in interact basically with several aspects
of the Frama-C framework: registration, getting command-line options, compilation and in-
stallation, console output, testing, and interaction between APIs.

13

CHAPTER 2. TUTORIAL

Db.Main

Dynamic

Plugin

eypT

Journal

jectPro

efile.dynamicMak

Design

t)oinpextension(GUI

Caption:

tsoinpregistration

directoryPlug-in

tationimplemenPlug-in

Register

Options

...

efileMak

?GUIPlug-in

...

Figure 2.1: Plug-in Integration Overview.

2.2.1 A Simple Script

The easiest way to extend Frama-C is to write a simple script. A simple ’Hello World’ script
consists of a single OCaml file:

File hello_world.ml1

let run () =
let chan = open_out "hello.out" in
Printf. fprintf chan "Hello, world!\n";
close_out chan

let () = Db.Main.extend run

This script defines a simple function that writes a message to an output file, then registers
the function run as an entry point for the script. Frama-C will call it among the other plug-in
entry points if the script is loaded.

The script is compiled, loaded and run with the command frama-c -load-script

1To be complete, this code (and some others in this tutorial) should handle exceptions potentially raised
by file operations (opening, writing and closing). We omit them for the sake of clarity.

14

2.2. THE HELLO PLUG-IN

hello_world.ml. Executing this command creates a hello.out file in the current direc-
tory.

2.2.2 Registering a Script as a Plug-in

To make this script better integrated into Frama-C, its code must register itself as a plug-in.
Such a registration provides general services, such as outputing on the Frama-C console, or
extending Frama-C with new command-line options.
Registering a plug-in is achieved through the use of the Plugin.Register functor:

File hello_world.ml

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

let run () =
let chan = open_out "hello.out" in
Printf. fprintf chan "Hello, world!\n";
close_out chan

let () = Db.Main.extend run

The argument for this functor is a module with three values:

• name is an arbitrary, non-empty string containing the full name of the module.

• shortname is a small string containing the short name of the module, usually used as
a prefix for plug-in options. No space is allowed in that string.

• help is a string containing free-form text, containing a description of the module.

Visible results of the registration include:

• “hello world” appears in the list of available plug-ins (consultable with frama-c
-load-script hello_world.ml -help);

• default options for the plug-in work, including the inline help (available with frama-c
-load-script hello_world.ml -hello-help).

2.2.3 Displaying Messages

The signature of the module Self obtained by applying Plugin.Register is
General_services. One of these general services is logging, i.e. message display. In Frama-
C, one should never attempt to write messages directly to stderr or stdout: use the general
services instead2.

File hello_world.ml

2However writing to a new file using standard OCaml primitives is OK.

15

CHAPTER 2. TUTORIAL

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

let run () =
Self. result "Hello, world!";
let product =
Self.feedback ∼ level:2 "Computing the product of 11 and 5...";
11 * 5

in
Self. result "11 * 5 = %d" product

let () = Db.Main.extend run

Running this script yields the following output:

$ frama-c -load-script hello_world.ml
[hello] Hello, world!
[hello] 11 * 5 = 55

The result routine is the function to use to output results of your plug-in. The Frama-C
output routines takes the same arguments than the OCaml function Format.printf.

The function feedback outputs messages that show progress to the user. In this example,
we gave to feedback a log level of 2, because we estimated that in most case the user is not
interested in seeing the progress of a fast operation (simple multiplication). The default log
level is 1, so by default this message is not displayed. To see it, the verbosity of the hello
plug-in must be increased:

$ frama-c -load-script hello.ml -hello-verbose 2
[hello] Hello, world!
[hello] Computing the product of 11 and 5...
[hello] 11 * 5 = 55

For a comprehensive list of the logging routines and options, see Section 4.8.

2.2.4 Adding Command Line Options

We now extend the hello world plug-in with new options.

If the plug-in is installed (with make install), it will be loaded and executed on every
invocation of frama-c, which is surely not what you want. To avoid this behavior, we add a
boolean option, set by default to false, that conditionally enables the execution of the main
function of the plug-in (the usual convention for the name of the option is to take the short
name of the module with no suffix, i.e. -hello in our case).

We also add another option, -hello-output, that takes a string argument. When set, the
hello message is displayed in the file given as argument.

File hello_world.ml

16

2.2. THE HELLO PLUG-IN

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

module Enabled = Self.False
(struct

let option_name = "-hello"
let help = "when on (off by default), " ^ help_msg

end)

module Output_file = Self.String
(struct

let option_name = "-hello-output"
let default = "-"
let arg_name = "output-file"
let help =
"file where the message is output (default: output to the console)"

end)

let run () =
if Enabled.get() then
let filename = Output_file.get () in
let output_fun msg =
if Output_file.is_default() then
Self. result "%s" msg

else
let chan = open_out filename in
Printf. fprintf chan "%s\n" msg;
close_out chan

in
output_fun "Hello, world!"

let () = Db.Main.extend run

Registering these new options is done by calling the Self.False and Self.String functors,
which respectively creates a new boolean option whose default value is false and a new string
option with a user-defined default value (here "-"). The values of these options are obtained
via Enabled.get () and Output_file.get ().

With this change, the hello message is displayed only if Frama-C is executed with the -hello
option.

$ frama-c
$ frama-c -load-script hello_world.ml -hello
[hello] Hello, world!
$ frama-c -load-script hello_world.ml -hello -hello-output hello.out
$ ls hello.out
hello.out

These new options also appear in the inline help for the hello plug-in:
$ frama-c -hello-help

17

CHAPTER 2. TUTORIAL

...
***** LIST OF AVAILABLE OPTIONS:

-hello when on (off by default), output a warm welcome message
to the user (opposite option is -no-hello)

-hello-output <output-file> file where the message is output (default:
output to the console)

...

2.2.5 Writing a Makefile

The use of load-script is ideal for small experimentations, or when writing very specific
extensions. When a plug-in becomes larger and must be split into several files, or more
general-purpose, it is a good idea to build and install it properly. Frama-C provides means
to simplify this through the use of Makefiles.

A simple Makefile
We first write a simple Makefile for our hello_world.ml plug-in:

File Makefile

FRAMAC_SHARE :=$(shell frama-c.byte -print-path)
FRAMAC_LIBDIR :=$(shell frama-c.byte -print-libpath)
PLUGIN_NAME = Hello
PLUGIN_CMO = hello_world
include $(FRAMAC_SHARE)/Makefile.dynamic

This Makefile set some variables before including the generic Makefile.dynamic which is
installed within Frama-C. It may be customized in several ways to help building a plug-in
(see Section 4.5 for details).

The name of each compilation unit (here hello_world) must be different of the plug-in
name set by the Makefile (here Hello), of any other plug-in names (e.g. value) and of
any other Frama-C kernel OCaml files (e.g. plugin).

Run make to compile it. You can then load and execute the module using frama-c
-load-module ./Hello.
Then run make install to install the plug-in (you need to have write access to the
$(FRAMAC_LIBDIR)/plugins directory).
Just launch frama-c (without any option): the Hello plug-in is now always loaded, without
the need to pass other options to the command line.

Splitting your source files
Here is a slightly more complex example where the plug-in has been splitten into several files.
Usually plug-in registration through Plugin.Register should be done at the bottom of the
module hierarchy, while registration of the run function through Db.Main.extend should at
the top, as in the following example. The PLUGIN_CMO variable must contain the list of file
names, in the correct OCaml build order.

File Makefile

18

2.3. THE CFG PLUG-IN

FRAMAC_SHARE := $(shell frama-c -print-path)
FRAMAC_LIBDIR := $(shell frama-c -print-libpath)
PLUGIN_NAME = Hello
PLUGIN_CMO = hello_options hello_print hello_run
include $(FRAMAC_SHARE)/Makefile.dynamic

File hello_options.ml

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

File hello_print.ml

let print_hello () = Hello_options.Self. result "Hello, World"

File hello_run.ml

let run () = Hello_print.print_hello ()

let () = Db.Main.extend run

2.2.6 Testing your Plug-in

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2.2.7 Documenting your Source Code

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2.3 The CFG plug-in

In this section, we create a new CFG plug-in that computes the control flow graph of a
function and outputs it in the dot format. Through its implementation, we explain some of
the APIs of Frama-C.

2.3.1 Visiting the AST

Writing an analysis for C programs is the primary purpose of a Frama-C plug-in. That
usually requires to visit the AST to compute information for some C constructs. There are
two different ways of doing that in Frama-C:

• through a direct recursive descent; or

19

http://bts.frama-c.com
http://bts.frama-c.com

CHAPTER 2. TUTORIAL

• by using the Frama-C visitor.

The first case is usually best if you have to compute information for most C constructs, while
the latter is best if only few C constructs are interesting or if you have to write a program
transformation. Of course, it is also possible to combine both ways.

Pretty-printing with direct recursive descent
Frama-C already has a function to pretty-print statements (namely Printer.pp_stmt), but
it is not suitable for us, as it will recursively print substatements of compound statements
(blocks, if, while, ...), while we only want to label the node representing the current statement:
substatements will be represented by other nodes. Thus we will use the following small
function:

open Cil_types

let print_stmt out = function
| Instr i → Printer.pp_instr out i
| Return _ → Format.pp_print_string out "<return>"
| Goto _ → Format.pp_print_string out "<goto>"
| Break _ → Format.pp_print_string out "<break>"
| Continue _ → Format.pp_print_string out "<continue>"
| If (e,_,_,_) → Format.fprintf out "if %a" Printer.pp_exp e
| Switch(e,_,_,_) → Format.fprintf out "switch %a" Printer.pp_exp e
| Loop _ → Format.fprintf out "<loop>"
| Block _ → Format.fprintf out "<block>"
| UnspecifiedSequence _ → Format.fprintf out "<unspecified sequence>"
| TryFinally _ | TryExcept _ | TryCatch _ → Format.fprintf out "<try>"
| Throw _ → Format.fprintf out "<throw>"

The Cil_types module contains the definition of the AST of a C program, like constructors
Cil_types.Instr, Cil_types.Return and so on of type Cil_types.stmt. The Printer
module contains functions that prints the different Cil types. The documentation of these
module is available on the Frama-C website3, or by typing make doc in the Frama-C source
distribution.

Creating the graphs with a visitor
In order to create our output, we must make a pass through the whole AST. An easy way to
do that is to use Frama-C visitor mechanism. A visitor is a class with one method per type
of the AST, whose default behavior is to just call the method corresponding to each of its
children. By inheriting from the visitor, and redefining some of the methods, one can perform
actions on selected parts of the AST, without the need to traverse the AST explicitly.

class print_cfg out = object
inherit Visitor.frama_c_inplace

Here we used the so-called “in place” visitor, which should be used for read-only access to the
AST. When performing code transformations, a “copy” visitor should be used, that creates
a new project (see section 4.16.4).
There are three kinds of nodes where we have something to do. First, at the file level, we
create the whole graph structure.

3From http://frama-c.com/download.html.

20

http://frama-c.com/download.html

2.3. THE CFG PLUG-IN

method! vfile _ =
Format.fprintf out "@[<hov 2>digraph cfg {@ ";
Cil.DoChildrenPost (fun f → Format.fprintf out "}@]@."; f)

Cil.DoChildrenPost is one of the possible visitAction, that tells the visitor what to do
after the function is executed. With DoChildrenPost func, the func argument is called
once the children have been executed: here we close the parenthesis once that all functions
have been printed in the file.
Then, for each function, we encapsulate the CFG in a subgraph, and do nothing for the other
globals.

method! vglob_aux g =
match g with
| GFun(f,_) →

Format.fprintf out "@[<hov 2>subgraph cluster_%a {@ \
@[<hv 2>graph@ [label=\"%a\"];@]@ "

Printer.pp_varinfo f.svar
Printer.pp_varinfo f.svar;

Cil.DoChildrenPost(fun g → Format.fprintf out "}@]@ "; g)
| _ → Cil.SkipChildren

Cil.SkipChildren tells the visitor not to visit the children nodes, which makes it more
efficient4.
Last, for each statement, we create a node in the graph, and create the edges toward its
successors:

method! vstmt_aux s =
Format.fprintf out "@[<hov 2>s%d@ [label=%S]@];@ "
s.sid (Pretty_utils.to_string print_stmt s.skind);

List. iter
(fun succ → Format.fprintf out "@[s%d → s%d;@]@ " s.sid succ.sid)
s.succs;

Format.fprintf out "@]";
Cil.DoChildren

This code could be optimized, for instance by replacing the final DoChildren by
SkipChildren for statements that cannot contain other statements, like Instr, and avoid
visiting the expressions.
Finally we close the object definition:

end

Hooking into Frama-C
It just remains to hook this script into Frama-C.

let run () =
let chan = open_out "cfg.out" in
let fmt = Format.formatter_of_out_channel chan in
Visitor .visitFramacFileSameGlobals (new print_cfg fmt) (Ast.get ());
close_out chan

let () = Db.Main.extend run

4In a copying visitor, Cil.JustCopy should have been used instead.

21

CHAPTER 2. TUTORIAL

Assuming the script is called cfg_print.ml, it can then be run with:
frama-c -load-script cfg_print.ml [other_options] file.c [file2.c]

And the graph can be visualized with
dotty cfg.out

This produces a graph like in Figure 2.2

File test.c

void f(int g)
{
g++;
g--;

}

int main(int argc, char **argv)
{

int i = 3;

if (i > 0)
{

while(--i);
}

else
{

f(3);
}

return 0;
}

f main

g ++;

g --;

<return>

i = 3;

if i > 0

<loop>

f(3);i --;

__retres = 0;

if i

<break>

<return>

Figure 2.2: Control flow graph for file test.c.

Further improvements
There are many possible enhancements to this code:

• There is a bug when trying to print statements that contain strings (such as
printf("Hello\n") such statements must be protected using the "%S" Format di-
rective;

• The script could be transformed into a regular plug-in, by registering into Frama-C, and
taking options from the command line; for instance to compute the control flow graph
of a single function given as an argument;

• The graphs could be fancier, in particular by distinguishing between branching nodes
and plain ones, or showing exit of blocks as well as their beginning; or linking a call
with the called function.

We will concentrate on another extension, which is to reuse the analysis of the value Frama-C
plug-in to color unreachable nodes.

22

2.3. THE CFG PLUG-IN

2.3.2 Interfacing with a kernel-integrated plug-in

We will first integrate with the value plug-in. There are two ways to integrate a plug-in with
Frama-C: standard plug-ins, like the cfg plug-in, are loaded dynamically. The value plug-in
is kernel-integrated, which means that it is registered statically through the Db module of the
Frama-C kernel which is the entry point for all kernel-integrated plug-ins. The value plug-in
is accessible through the Db.Value module.
The code modification we propose is to color in pink the nodes guaranteed to be unreachable
by the value analysis. For this purpose, we change the vstmt_aux method in the visitor:

method! vstmt_aux s =
let color =
if Db.Value.is_computed () then
let state = Db.Value.get_stmt_state s in
let reachable = Db.Value.is_reachable state in
if reachable then "@[fillcolor=\"#ccffcc\" style=filled@]"
else "@[fillcolor=pink style=filled@]"

else ""
in
Format.fprintf out "@[s%d@ [label=%S %s]@];@ "
s.sid (Pretty_utils.to_string print_stmt s.skind) color;

List. iter
(fun succ → Format.fprintf out "@[s%d → s%d;@]@ " s.sid succ.sid)
s.succs;

Cil.DoChildren

This code fills the nodes with green if the node may be reachable, and in pink if the node is
guaranteed not to be reachable; but only if the value analysis was previously computed.
To test this code, frama-c should be launched with:

frama-c test.c -val -then -load-script cfg_print.ml && dotty cfg.out

The use of -then ensures that Frama-C first performs the value analysis on test.c, before
loading and executing the CFG script (see Frama-C User Manual [4]).
The resulting graph is shown on Figure 2.3.

2.3.3 Extending the Frama-C GUI

In this section, we will extend the script so that the control flow graph can be displayed
interactively. For that, we will extend the Frama-C GUI so that when you right-click on a
function in the code, a new “Show CFG” item appears, that displays the control flow graph
of the function in a dialog box. This is achieved just by appending the following pieces of
code at the end of the cfg_print.ml file.
Currently, we used a visitor that outputs a dot file with the CFG of all functions of all files.
We use dump_function to outputs the CFG of a single function instead.

let dump_function fundec fmt =
Format.fprintf fmt "@[<hov 2>digraph cfg {@ ";
ignore(Visitor.visitFramacFunction (new print_cfg fmt) fundec);
Format.fprintf fmt "}@]@\n"

We reused the print_cfg visitor, but we selected a different starting point. The argument
fundec gets type Cil_types.fundec, which is the CIL type representing a function definition.
Now we write the GUI extension code:

23

CHAPTER 2. TUTORIAL

File test.c

void f(int g)
{
g++;
g--;

}

int main(int argc, char **argv)
{

int i = 3;

if (i > 0)
{

while(--i);
}

else
{

f(3);
}

return 0;
}

f main

g ++;

g --;

<return>

i = 3;

if i > 0

<loop>

f(3);i --;

__retres = 0;

if i

<break>

<return>

Figure 2.3: Control flow graph colored with reachability information.

let cfg_selector
(popup_factory:GMenu.menu GMenu.factory) main_ui ∼button:_ localizable =

match localizable with
(∗ Matchs global declarations that are functions. ∗)
| Pretty_source.PVDecl(_, ({vtype = TFun(_,_,_,_)} as vi)) →

let callback () =
let kf = Globals.Functions.get vi in
let fundec = Kernel_function.get_definition kf in
let window:GWindow.window = main_ui#main_window in
Gtk_helper.graph_window_through_dot

∼parent:window ∼title:"Control flow graph"
(dump_function fundec)

in
ignore (popup_factory#add_item "Show _CFG" ∼callback)

| _ → ()

let main_gui main_ui = main_ui#register_source_selector cfg_selector

let () = Design.register_extension main_gui

Let us explain this code from the end. Design.register_extension is the entry point for
extending the GUI. Its argument is a function which takes as argument an object corre-
sponding to the main window of the Frama-C GUI. This object provides accesses to the main
widgets of the window, and several extension points.

Here we have implemented a single extension, the “source selector”, that allows to add
entries to menu obtained when right-clicking on the source. This is implemented by the
cfg_selector function.

24

2.3. THE CFG PLUG-IN

This function takes a localizable argument, which gives information on where the user
clicks on the source. Here we do something only if the user clicks on the declaration of
a variable whose type is a function (i.e. when the user clicked on a function declaration
or definition). In that case, we add an item to the popup menu, that calls the callback
function if clicked. The callback function calls a Frama-C GUI function that displays a
graph from dot printing functions. It uses several important Frama-C APIs: Globals and
Kernel_function which contains several functions for manipulating globals and functions.

A script is not an ideal environment for extending the GUI. In particular, the GUI OCaml
modules are available only when the script is loaded with frama-c-gui, and not when loaded
with frama-c. When the user wants to view CFG from the GUI, then outputing the CFG
of all functions in cfg.out is useless. We will now see how to cope with these problems, by
promoting the script into a true plug-in.

2.3.4 Plug-In registration and command line options

We already saw how to register functions in the previous “Hello” tutorial. We now apply
these principles to the CFG plug-in.

module Self = Plugin.Register(struct
let name = "control flow graph"
let shortname = "cfg"
let help = "control flow graph computation and display"

end)

module Enabled = Self.False(struct
let option_name = "-cfg"
let help = "when on (off by default), computes the CFG graph of all functions."

end)

module OutputFile = Self.String(struct
let option_name = "-cfg-output"
let default = "cfg.dot"
let arg_name = "output-file"
let help = "file where the graph is output, in dot format."

end)

let run () =
if Enabled.get() then
let filename = OutputFile.get () in
let chan = open_out filename in
let fmt = Format.formatter_of_out_channel chan in
Visitor .visitFramacFileSameGlobals (new print_cfg fmt) (Ast.get ());
close_out chan

let () = Db.Main.extend run

We have added two options, -cfg to compute the CFG conditionnaly, and -cfg-output to
choose the output file.

An interesting addition would be to add a -cfg-target option, which would take a set
of files or functions whose CFG would be computed, using the Self.String_set functor.
Depending on the targets, visiting the AST would have different starting points. This is left
as an exercise for the reader.

25

CHAPTER 2. TUTORIAL

Another interesting exercise is to solve the following problem. Currently, the complete CFG
for the whole application is computed for each Frama-C step, i.e. executing frama-c test.c
-cfg -then -report would compute the CFG twice. Indeed, the -cfg option sets Enabled
to true, and the run function is executed once per task. To solve this problem, one has
to create a boolean state to remember that the plug-in has been already executed. The
apply_once function in the State_builder module helps dealing with this issue (reading
the section 2.3.9 of this tutorial and section 4.12 of this manual should help you understand
the underlying notion of states).

2.3.5 Splitting files and writing a Makefile

The Frama-C plug-in development environment allows to split GUI-related and non-GUI
related modules, so that GUI-related modules are loaded and run only if Frama-C is executed
with frama-c-gui. This requires splitting the module into several files. We choose the
following architecture:

• cfg_options.ml implements plug-in registration and configuration options;

• cfg_core.ml implements the main functions for computating the CFG;

• cfg_register.ml implements “global” computation of the CFG using the -cfg option,
and hooking into the Frama-C main loop;

• cfg_gui.ml implements GUI registration.

Dependencies between the modules5 is presented on Figure 2.4.

Cfg_options

Cfg_core

Cfg_register Cfg_gui

Figure 2.4: CFG plug-in architecture

To break recursive dependencies between OCamlmodules, it is typical that plug-in registration
is done at the bottom of the module hierarchy, while definition of the run function is at the
top. The GUI is also at the top of the hierarchy: the Frama-C Makefile requires that normal
plug-in modules do not depend on GUI modules. Note that currently, the dependency from
Cfg_core and Cfg_gui to Cfg_register is artificial, but in future evolutions the GUI could
depend on configuration options.

File Makefile

5This graphic is generated in file doc/code/modules.dot after running make doc.

26

2.3. THE CFG PLUG-IN

FRAMAC_SHARE := $(shell frama-c -print-path)
FRAMAC_LIBDIR := $(shell frama-c -print-libpath)
PLUGIN_NAME = Cfg
PLUGIN_CMO = cfg_options cfg_core cfg_register
PLUGIN_GUI_CMO = cfg_gui
include $(FRAMAC_SHARE)/Makefile.dynamic

In the Makefile, the PLUGIN_CMO variable must contain the list of file names of the ml files,
in the correct OCaml build order. Modules in PLUGIN_CMO must not depend on modules in
PLUGIN_GUI_CMO.
Here is the listing for the different modules:

File cfg_options.ml

module Self = Plugin.Register(struct
let name = "control flow graph"
let shortname = "cfg"
let help = "control flow graph computation and display"

end)

module Enabled = Self.False(struct
let option_name = "-cfg"
let help = "when on (off by default), computes the CFG graph of all functions."

end)

module OutputFile = Self.String(struct
let option_name = "-cfg-output"
let default = "cfg.dot"
let arg_name = "output-file"
let help = "file where the graph is output, in dot format."

end)

File cfg_core.ml

module Options = Cfg_options
open Cil_types

let print_stmt out = function
| Instr i → Printer.pp_instr out i
| Return _ → Format.pp_print_string out "<return>"
| Goto _ → Format.pp_print_string out "<goto>"
| Break _ → Format.pp_print_string out "<break>"
| Continue _ → Format.pp_print_string out "<continue>"
| If (e,_,_,_) → Format.fprintf out "if %a" Printer.pp_exp e
| Switch(e,_,_,_) → Format.fprintf out "switch %a" Printer.pp_exp e
| Loop _ → Format.fprintf out "<loop>"
| Block _ → Format.fprintf out "<block>"
| UnspecifiedSequence _ → Format.fprintf out "<unspecified sequence>"
| TryFinally _ | TryExcept _ | TryCatch _ → Format.fprintf out "<try>"
| Throw _ → Format.fprintf out "<throw>"

class print_cfg out = object
inherit Visitor.frama_c_inplace

method! vfile _ =

27

CHAPTER 2. TUTORIAL

Format.fprintf out "@[<hov 2>digraph cfg {@ ";
Cil.DoChildrenPost (fun f → Format.fprintf out "}@]@."; f)

method! vglob_aux g =
match g with
| GFun(f,_) →

Format.fprintf out "@[<hov 2>subgraph cluster_%a {@ \
@[<hv 2>graph@ [label=\"%a\"];@]@ "

Printer.pp_varinfo f.svar
Printer.pp_varinfo f.svar;

Cil.DoChildrenPost(fun g → Format.fprintf out "}@]@ "; g)
| _ → Cil.SkipChildren

method! vstmt_aux s =
let color =
if Db.Value.is_computed () then
let state = Db.Value.get_stmt_state s in
let reachable = Db.Value.is_reachable state in
if reachable then "@[fillcolor=\"#ccffcc\" style=filled@]"
else "@[fillcolor=pink style=filled@]"

else ""
in
Format.fprintf out "@[s%d@ [label=%S %s]@];@ "
s.sid (Pretty_utils.to_string print_stmt s.skind) color;

List. iter
(fun succ → Format.fprintf out "@[s%d → s%d;@]@ " s.sid succ.sid)
s.succs;

Cil.DoChildren

end

let dump_function fundec fmt =
Format.fprintf fmt "@[<hov 2>digraph cfg {@ ";
ignore(Visitor.visitFramacFunction (new print_cfg fmt) fundec);
Format.fprintf fmt "}@]@\n"

File cfg_register.ml

open Cfg_options
open Cfg_core

let run () =
if Enabled.get() then
let filename = OutputFile.get () in
let chan = open_out filename in
let fmt = Format.formatter_of_out_channel chan in
Visitor .visitFramacFileSameGlobals (new print_cfg fmt) (Ast.get ());
close_out chan

let () = Db.Main.extend run

File cfg_gui.ml

open Cil_types
open Cfg_core

28

2.3. THE CFG PLUG-IN

module Options = Cfg_options

let cfg_selector
(popup_factory:GMenu.menu GMenu.factory) main_ui ∼button:_ localizable =

match localizable with
(∗ Matchs global declarations that are functions. ∗)
| Pretty_source.PVDecl(_, ({vtype = TFun(_,_,_,_)} as vi)) →

let callback () =
let kf = Globals.Functions.get vi in
let fundec = Kernel_function.get_definition kf in
let window:GWindow.window = main_ui#main_window in
Gtk_helper.graph_window_through_dot

∼parent:window ∼title:"Control flow graph"
(dump_function fundec)

in
ignore (popup_factory#add_item "Show _CFG" ∼callback)

| _ → ()

let main_gui main_ui = main_ui#register_source_selector cfg_selector

let () = Design.register_extension main_gui

2.3.6 Getting your Plug-in Usable by Others

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2.3.7 Writing your Plug-in into the Journal

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2.3.8 Writing a Configure Script

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2.3.9 Getting your plug-in Usable in a Multi Projects Setting

Registering and using state
In this section, we will learn how to register state into Frama-C. A state is a piece of infor-
mation kept by a plug-in. For instance, the value plug-in computes, for each statement, a
table associating to each AST’s variable a set of values the program may have at runtime:
this association table is a state.

State registration provides several features:

• It allows the state to be saved and reloaded with the rest of the session, for instance
when using frama-c -save/frama-c -load;

29

http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com

CHAPTER 2. TUTORIAL

• It helps maintaining consistency between the AST and the results and parameters of
the analysis of the different plug-ins.

In this tutorial, we will store the file representing the dot output of the control flow graph
of a function (as needed by dump_function) as a string, by using a hashtable from fundec
to string. Storing this string will allow us to memoize [17] our computation: the string is
computed the first time the CFG of a function is displayed, while the following requests will
reuse the result of the computation. Registering the hashtable as a Frama-C state ismandatory
to ensure Frama-C consistency: for instance, by using a standard OCaml hashtable, a user
that would have loaded several session through the GUI could observe the CFG of function
of a previous session instead of the one he wants to observe.

Registering a state is done by a functor application:

module Cfg_graph_state = State_builder.Hashtbl
(Cil_datatype.Fundec.Hashtbl)
(Datatype.String)
(struct

let name = "Data_for_cfg.Cfg_graph_state"
let dependencies = [Ast.self; Db.Value.self]
let size = 17

end);;

The State_builder module provides several functors that help registering states.
State_builder.Hashtbl allows the developer to create a hashtable. It is parameterized
by a module describing the hashtable and its key, a module describing the data associated to
keys, and other informations.

The Datatype and Cil_datatype modules describe the hashtable and its associated data,
and explain for instance how the datatype should be copied, printed, or marshalled to the
disk. They are part of the Type library [20], described in Section 4.9. Datatype provides de-
scriptions for standard OCaml types, and Cil_datatype for the CIL types (in the Cil_types
module).

The last module argument describes the initial size of the hashtable, a name (mainly used
for internal debugging), and a list of dependencies. Here we expressed that our hashtable
depends on the Ast and the results of the Value plug-in. For instance, whenever the Frama-C
kernel updates one of these states, it will automatically reset our hashtable. This ensures
consistency of the analysis: if the Ast of a function changes, or the value analysis is executed
with a different entry point, this potentially affects the display of the control flow graph, that
we must recompute.

Once the module has been declared, it is fairly easy to use it.

let dump_to_string fundec =
Self.feedback "Computing CFG for function %s" (fundec.svar.vorig_name);
ignore
(Visitor.visitFramacFunction (new print_cfg Format.str_formatter) fundec);

Format.flush_str_formatter ()

let dump_to_string_memoized = Cfg_graph_state.memo dump_to_string

let dump_function fundec fmt =
Format.fprintf fmt "@[digraph cfg {%s}@]@\n"
(dump_to_string_memoized fundec)

30

2.3. THE CFG PLUG-IN

dump_function now takes two steps: first the CFG is printed to a string, then the string
is printed to the fmt argument. This allows the dump_to_string part to be memoized, i.e.
the results of dump_to_string are saved so that later calls to dump_function with the same
fundec argument reuse that result.
If you launch frama-c-gui with the above code, click on functions to view their CFG, and
inspect the console, you will observe that the string “Computing CFG for function ...” is
displayed only once per function.
One can see the effects of the dependency on the Value plug-in by first launching the value
analysis, inspecting the CFG for the f function, then chaning the entry point to f in the CFG
and re-running the value analysis. The console indicates that the CFG have been recomputed.
Indeed the state of the Value plug-in, and of its dependencies, was resetted when the entry
point was changed.
Another way to observe how Frama-C automatically handles states is to display a CFG, save
the session, close and restart Frama-C, and then reload the session: the control flow graph is
not recomputed, which means that Frama-C has automatically saved the Cfg_graph_state
with the rest of the session. Everything should also work properly when loading several
sessions.

Clearing states, selection and projects
There is one caveat though: if the user computes the CFG before running the Value analysis,
and then runs Value, he will not see a colored graph (unless he re-launch the Value analysis
with different parameters). This is because the state of the CFG is reset when the state of
Value is reset, not when it is first computed.
To solve this problem, we will manually reset the Cfg_graph_state if we detect that the
Value analysis has been run since the last time we computed the CFG. For that, we have to
remember the previous value of Db.Value.is_computed (), i.e. to register another state:

module Value_is_computed = State_builder.Ref
(Datatype.Bool)
(struct

let name = "Data_for_cfg.Value_computed"
let dependencies = []
let default () = false

end);;

This new state only consists of a reference to a boolean value.
Then we just replace dump_function in the code above by the following.

let dump_function fundec fmt =
if not (Value_is_computed.get ()) && Db.Value.is_computed () then begin
Value_is_computed.set true;
let selection = State_selection.with_dependencies Cfg_graph_state.self in
Project.clear ∼ selection ();

end;
Format.fprintf fmt "@[digraph cfg {%s}@]@." (dump_to_string_memoized fundec)

The only part that need to be explained is the notion of selection and project. A selection is
just a set of states; here we selected the state Cfg_graph_state with all its dependencies, as
resetting this state would also impact states that would depend on it (even if there is none
for now). We use Project.clear to reset the selection.

31

CHAPTER 2. TUTORIAL

Project explanation
A project [19] is a consistent version of all the states of Frama-C. Frama-C is multi-AST,
i.e.Frama-C plug-ins can change the AST of the program, or perform incompatible analysis
(e.g. with different entry points). Projects consistently groups a version of the AST of the
program, with the states related to this AST.
The Project.clear function has type :

val clear: ? selection :State_selection.t → ?project:t → unit → unit

The arguments selection and project can be seen as a coordinate system, and the function
allows to clear specific versions of specific states. By default, Frama-C functions act on the
current project. The developer has to use Project.on or optional arguments to act on
different projects. Frama-C automatically handles duplication and switch of states when
duplicating or changing of projects. This is the last benefit of state registration.
To summarize:

• To store results, plug-ins should register states;

• A project is a consistent version of all the states in Frama-C, together with a version of
the AST;

• A session is a set of projects;

• Frama-C transparently handles the versionning of states when changing or duplicating
projects, saving and reloading sessions from disk, etc.

• The version of the state in a project can change; by default Frama-C functions operate
on the current project.

• A selection is a set of states. Dependencies allow to create selections.

• As a plug-in developer, you have to remember that is up to you to preserve consistency
between your states and their dependencies by clearing the latter when the former is
modified in an incompatible way. For instance, it would have been incorrect to not call
State_selection.with_dependencies in the last code snippset of this tutorial.

Projects are generally created using copy visitors. We encourage the reader to experiment
with multiple projects development by using them. An interesting exercise would be to change
the AST so that execution of each instruction is logged to a file, and then re-read that file
to print in the CFG how much time each instruction has been executed. Another interesting
exercise would be to use the apply_once function so that the CFG plug-in is executed only
once, as explained in section 2.3.4 of this tutorial.

32

Chapter 3

Software Architecture

Target readers: beginners.

In this chapter, we present the software architecture of Frama-C. First, Section 3.1 presents
its general overview. Then, we focus on three different parts:

• Section 3.2 introduces the API of Cil [18] seen by Frama-C;

• Section 3.3 shows the organisation of the Frama-C kernel; and

• Section 3.4 explains the plug-in integration.

3.1 General Description

The Frama-C platform provides services to ease:

• analysis and source-to-source transformation of big-size C programs;

• addition of new plug-ins; and

• plug-ins collaboration.

In order to reach these goals, Frama-C is based on a software architecture with a specific
design which is presented in this document, and summarized in Figure 3.1. Mainly this
architecture is separated in three different parts:

• Cil (C Intermediate Language) [18] extended with an implementation of the specification
language ACSL (ANSI/ISO C Specification Language) [1]. This is the intermediate
language upon which Frama-C is based. See Section 3.2 for details.

• The Frama-C kernel. It is a toolbox on top of Cil dedicated to static analyses. It
provides data structures and operations which help the developer to deal with the Cil
AST (Abstract Syntax Tree), as well as general services providing an uniform set of
features to Frama-C. See Section 3.3 for details.

• The Frama-C plug-ins. These are analyses or source-to-source transformations that
use the kernel, and possibly others plug-ins through their APIs. See Section 3.4 for
details.

33

CHAPTER 3. SOFTWARE ARCHITECTURE

Plug-ins

Plug-insdStandar

1Plug-in ... nPlug-in

Plug-insdategrKernel-inte

1Plug-in ... pPlug-in

rama-CFinsideAPIPlug-ins

aluesVPlug-ins

Db Dynamic

esypTPlug-insdategrKernel-inte

1esyptPlug-in ... qesyptPlug-in

Kernelrama-CF

esServiccificeSp

ManipulationAST StatesMemory

LatticesterpretationInAbstract

Utilities

esServicalGener

jectPro

Plugin Journal

Cmdline

eypT Log

CildExtende

APICilExtended

KernelCilExtended
Linkingyping,Tarsing,PLexing,

ASTCilExtended

Figure 3.1: Architecture Design.

34

3.2. CIL: C INTERMEDIATE LANGUAGE

3.2 Cil: C Intermediate Language

Cil [18] is a high-level representation along with a set of tools that permit easy analysis and
source-to-source transformation of C programs.
Frama-C uses Cil as a library which performs the main steps of the compilation of C programs
(pre-processing, lexing, parsing, typing and linking) and outputs an abstract syntax tree
(AST) ready for analysis. From the Frama-C developer’s point of view, Cil is a toolbox usable
through its API and providing:

• the AST description (module Cil_types);

• useful AST operations (module Cil);

• some syntactic analysis like a (syntactic) call graph computation (module Callgraph)
or generic forward/backward dataflow analysis (module Dataflow2).

Frama-C indeed extends Cil with ACSL (ANSI/ISO C Specification Language) [1], its specifi-
cation language. The extended Cil API consequently provides types and operations in order
to properly deal with annotated C programs.
Cil modules belong to directory (and subdirectories of) cil/src.

3.3 Kernel

On top of the extended Cil API, the Frama-C kernel groups together specific services providing
in different modules which are described below.

• In addition to the Cil utilities, Frama-C provides useful operations (mainly in mod-
ule Extlib) and datastructures (e.g. specialized version of association tables like
Rangemap). These modules belong to directories src/lib and src/misc and they are
not specific to the analysis or transformation of C programs.

• Frama-C provides generic lattices useful for abstract interpretation (module
Abstract_interp) and some pre-instantiated arithmetic lattices (module Ival). The
abstract interpretation toolbox is available in directory src/ai.

• Frama-C also provides different representations of Cmemory-states (module Locations)
and data structures using them (e.g. association tables indexing by memory-states in
modules Lmap and Lmap_bitwise). The memory-state toolbox is available in directory
src/memory_state.

• Moreover, directory src/kernel provides a bunch of very helpful operations over the
extended Cil AST. For example, module Globals provides operations dealing with
global variables, functions and annotations while module Visitor provides inheritable
classes in order to permit easy visiting, copying or in-place modification of the AST.

Besides, Frama-C also provides some general-purpose services, used by all other modules (even
the Frama-C version of Cil), which are shortly described below.

• Module Log provides an uniform way to display user messages in Frama-C.

35

CHAPTER 3. SOFTWARE ARCHITECTURE

• Module Cmdline parses the Frama-C command line.

• Module Plugin provides a high-level API on top of the two previous modules for the
plug-in developer: a developer usually uses this module and does not directly use mod-
ules Log or Cmdline.

• Directory src/type contains a library called Type. It provides OCaml types as first-class
values, as well as several standard operations over types. Such values and operations
are required by several others Frama-C services (journalization, registration of dynamic
values, projects, etc). See section 4.9 for details.

• Module Journal handles how Frama-C journalizes its actions. See section 4.11 for
details.

• Directory src/project contains a library, called Project. It provides analysis of sev-
eral ASTs in the same session. See section 4.12 for details.

3.4 Plug-ins

In Frama-C, plug-ins are analysis or source-to-source transformations. Each of them is an
extension point of the Frama-C kernel. Frama-C allows plug-in collaborations: a plug-in p
can use a list of plug-ins p1, . . . , pn and conversely. Mutual dependences between plug-ins
are even possible. If a plug-in is designed to be used by another plug-in, it has to register its
API either by providing a .mli file, or in modules Dynamic or Db. This last method is only
available to kernel-integrated plug-ins and is now deprecated.

More generally, the set of functionalities available for a standard plug-in and for a kernel-
integrated plug-in are mostly the same. The differences between a standard plug-in and a
kernel-integrated one are listed Figure 3.2.

Functionality Standard plug-in Kernel-integrated plug-in
dynamic linking default possible
static linking possible default

API in an .mli file possible possible
API in Dynamic possible possible

API in Db no possible by modifying the kernel
add new abstract types possible possible
add new concrete types no possible by modifying the kernel

Figure 3.2: Differences between standard plug-ins and kernel-integrated ones.

Both kinds of plug-ins may be either dynamically linked or statically linked within the Frama-
C kernel.

Dynamic linking is the standard way of linking. However, it is only available in native
mode if you have a supported architecture for this feature. See the OCaml manual [15]
for additional details.

Both kinds of plug-ins may register their API through a .mli file, or module Dynamic.

36

3.4. PLUG-INS

The standard way of registering the API of a plug-in is through a .mli file. Register-
ing through module Dynamic remains useful in case of mutual recursive plug-ins, while
registering through Db is deprecated.

37

Chapter 4

Advanced Plug-in Development

This chapter details how to use services provided by Frama-C in order to be fully operational
with the development of plug-ins. Each section describes technical points a developer should
be aware of. Otherwise, one could find oneself in one or more of the following situations 1

(from bad to worse):

1. reinventing the (Frama-C) wheel;

2. being unable to do some specific things (e.g. saving results of your analysis on disk, see
Section 4.12.2);

3. introducing bugs in your code;

4. introducing bugs in other plug-ins using your code;

5. breaking the kernel consistency and so potentially breaking all the Frama-C plug-ins
(e.g. if you modify the AST without changing project, see Section 4.12.5).

In this chapter, we suppose that the reader is able to write a minimal plug-in like hello de-
scribed in chapter 2 and knows about the software architecture of Frama-C (chapter 3). More-
over plug-in development requires the use of advanced features of OCaml (module system,
classes and objects, etc). Static plug-in development requires some knowledge of autoconf
and make. Each section summarizes its own prerequisites at its beginning (if any).
Note that the following subsections can be read in no particular order: their contents are
indeed quite independent from one another even if there are references from one chapter to
another one. Pointers to reference manuals (Chapter 5) are also provided for readers who
want full details about specific parts.

4.1 File Tree Overview

Target readers: beginners.

The Frama-C main directory is split in several sub-directories. The Frama-C source code is
mostly provided in directories cil and src. The first one contains the source code of Cil [18]

1It is fortunately quite difficult (but not impossible) to fall into the worst situation by mistake if you are
not a kernel developer.

39

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

extended with an ACSL [1] implementation. The second one is the core implementation of
Frama-C. This last directory contains directories of the Frama-C kernel and directories of the
provided Frama-C plug-in.
A pretty complete description of the Frama-C file tree is provided in Section 5.1.

4.2 Frama-C Configure.in

Target readers: not for standard plug-ins developers.

Prerequisite: knowledge of autoconf and shell programming.

In this Section, we detail how to modify the file configure.in in order to configure plug-ins
(Frama-C configuration has been introduced in Section 2.3.8 and 2.3.5).
First Section 4.2.1 introduces the general principle and organisation of configure.in. Then
Section 4.2.2 explains how to configure a new simple plug-in without any dependency. Next
we show how to exhibit dependencies with external libraries and tools (Section 4.2.4) and
with other plug-ins (Section 4.2.5). Finally Section 4.2.3 presents the configuration of external
libraries and tools needed by a new plug-in but not used anywhere else in Frama-C.

4.2.1 Principle

When you execute autoconf, file configure.in is used to generate the configure script.
Each Frama-C user executes this script to check his system and determine the most appropri-
ate configuration: at the end of this configuration (if successful), the script summarizes the
status of each plug-in, which can be:

• available (everything is fine with this plug-in);

• partially available: either an optional dependency of the plug-in is not fully available,
or a mandatory dependency of the plug-in is only partially available; or

• not available: either the plug-in itself is not provided by default, or a mandatory de-
pendency of the plug-in is not available.

The important notion in the above definitions is dependency. A dependency of a plug-in
p is either an external library/tool or another Frama-C plug-in. It is either mandatory or
optional. A mandatory dependency must be present in order to build p, whereas an optional
dependency provides features to p that are additional but not highly required (especially p
must be compilable without any optional dependency).
Hence, for the plug-in developer, the main role of configure.in is to define the optional
and mandatory dependencies of each plug-in. Another standard job of configure.in is
the addition of options –-enable-p and –-disable-p to configure for a plug-in p. These
options respectively forces p to be available and disables p (its status is automatically “not
available”).
Indeed configure.in is organised in different sections specialized in different configuration
checks. Each of them begins with a title delimited by comments and it is highlighted when
configure is executed. These sections are described in Section 5.2. Now we focus on the
modifications to perform in order to integrate a new plug-in in Frama-C.

40

4.2. FRAMA-C CONFIGURE.IN

4.2.2 Addition of a Simple Plug-in

In order to add a new plug-in, you have to add a new subsection for the new plug-in to Section
Plug-in wished. This action is usually very easy to perform by copying/pasting from another
existing plug-in (e.g. occurrence) and by replacing the plug-in name (here occurrence) by
the new plug-in name in the pasted part. In these sections, plug-ins are sorted according to
a lexicographic ordering.
For instance, SectionWished Plug-in introduces a new sub-section for the plug-in occurrence
in the following way.

occurrence
############
check_plugin(occurrence,src/occurrence,

[support for occurrence analysis],yes,no)

The first argument is the plug-in name, the second one is the name of directory containing
the source files of the plug-in, the third one is a help message for the –enable-occurrence
option of configure, the fourth one indicates if the plug-in is enabled by default and the last
one indicates if the plug-in will be dynamically linked within the Frama-C kernel.

The plug-in name must contain only alphanumeric characters and underscores. It must
be the same as the name value given as argument to the functor Plugin.Register of
section 4.7 (with spaces replaced by underscore).

The macro check_plugin sets the following variables: FORCE_OCCURRENCE,
REQUIRE_OCCURRENCE, USE_OCCURRENCE, ENABLE_OCCURRENCE, and DYNAMIC_OCCURRENCE.

The first variable indicates if the user explicitly requires the availability of occurrence via
setting the option –-enable-occurrence. The second and third variables are used by oth-
ers plug-ins in order to handle their dependencies (see Section 4.2.5). The fourth variable
ENABLE_OCCURRENCE indicates the plug-in status (available, partially available or not avail-
able). If –-enable-occurrence is set, then ENABLE_OCCURRENCE is yes (plug-in available);
if –-disable-occurrence is set, then its value is no (plug-in not available). If no option is
specified on the command line of configure, its value is set to the default one (according to
the value of the fourth argument of check_plugin). Finally, DYNAMIC_OCCURRENCE indicates
whether the plug-in will be dynamically linked within the Frama-C kernel.

4.2.3 Configuration of New Libraries or Tools

Some plug-ins needs additional tools or libraries to be fully functional. The configure script
takes care of these in two steps. First, it checks that an appropriate version of the external
dependency exists on the system. Second, it verifies for each plug-in that its dependencies
are met. Section 4.2.4 explains how to make a plug-in depend on a given library (or tool).
The present section deals with the first part, that is how to check for a given library or tool
on a system. Configuration of new libraries and configuration of new tools are similar. In
this section, we therefore choose to focus on the configuration of new libraries. This is done
by calling a predefined macro called configure_library2. The configure_library macro
takes three arguments. The first one is the (uppercase) name of the library, the second one
is a filename which is used by the script to check the availability of the library. In case there

2For tools, there is a macro configure_tool which works in the same way as configure_library.

41

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

are multiple locations possible for the library, this argument can be a list of filenames. In
this case, the argument must be properly quoted (i.e. enclosed in a [,] pair). Each name is
checked in turn. The first one which corresponds to an existing file is selected. If no name
in the list corresponds to an existing file, the library is considered to be unavailable. The
last argument is a warning message to display if a configuration problem appears (usually
because the library does not exist). Using these arguments, the script checks the availability
of the library.
Results of this macro are available through two variables which are substituted in the files
generated by configure.

• HAS_library is set to yes or no depending on the availability of the library

• SELECTED_library contains the name of the version selected as described above.

When checking for OCaml libraries and object files, remember that they come in two flavors:
bytecode and native code, which have distinct suffixes. Therefore, you should use the variables
LIB_SUFFIX (for libraries) and OBJ_SUFFIX (for object files) to check the presence of a given
file. These variables are initialized at the beginning of the configure script depending on
the availability of a native-code compiler on the current installation.

Example 4.1 The library Lablgtksourceview2 (used to have a better rendering of C sources
in the GUI) is part of Lablgtk2 . This is checked through the following command:

configure_library(
[GTKSOURCEVIEW],
[$OCAMLLIB/lablgtk2/lablgtksourceview2.$LIB_SUFFIX],
[lablgtksourceview not found])

4.2.4 Addition of Library/Tool Dependencies

Dependencies upon external tools and libraries are governed by two macros:

• plugin_require_external(plugin,library) indicates that plugin requires library in
order to be compiled.

• plugin_use_external(plugin,library) indicates that plugin uses library, but can
nevertheless be compiled if library is not installed (potentially offering reduced func-
tionality).

Recommendation 4.1 The best place to perform such extensions is just after the addition
of p which sets the value of ENABLE_p.

Example 4.2 Plug-in gui requires Lablgtk2 [12] and GnomeCanvas . It also optionally
uses Dot for displaying graphs (graph cannot be displayed withoud this tool). So, just after
its declaration, there are the following lines in configure.in.

plugin_require_external(gui,lablgtk)
plugin_require_external(gui,gnomecanvas)
plugin_use_external(gui,dot)

This line specify that Lablgtk2 must be available on the system if the user wants to compile
gui.

42

4.3. PLUG-IN SPECIFIC CONFIGURE.IN

4.2.5 Addition of Plug-in Dependencies

Adding a dependency with another plug-in is quite the same as adding a dependency with an
external library or tool (see Section 4.2.4). For this purpose, configure.in uses two macros

• plugin_require(plugin1,plugin2) states that plugin1 needs plugin2.

• plugin_use(plugin1,plugin2) states that plugin1 can be used in absence of plugin2,
but requires plugin2 for full functionality.

There can be mutual dependencies between plug-ins. This is for instance the case for plug-ins
value and from.

4.3 Plug-in Specific Configure.in

Target readers: standard plug-ins developers.

Prerequisite: knowledge of autoconf and shell programming.

External plug-ins can have their own configuration file, and can rely on the macros defined for
Frama-C. In addition, as mentioned in section 4.5.2, those plug-ins can be compiled directly
from Frama-C’s own Makefile. In order for them to integrate well in this setting, they should
follow a particular layout, described below. First, they need to be able to refer to the auxiliary
configure.ac file defining Frama-C-specific macros when they are used as stand-alone plug-
ins. This can be done by the following code

m4_define([plugin_file],Makefile)

m4_define([FRAMAC_SHARE_ENV],
[m4_normalize(m4_esyscmd([echo $FRAMAC_SHARE]))])

m4_define([FRAMAC_SHARE],
[m4_ifval(FRAMAC_SHARE_ENV,[FRAMAC_SHARE_ENV],

[m4_esyscmd(frama-c -print-path)])])

m4_ifndef([FRAMAC_M4_MACROS],
[m4_include(FRAMAC_SHARE/configure.ac)]
)

plugin_file is the file which must be present to ensure that autoconf is called in the
appropriate directory (see documentation for the AC_INITmacro of autoconf). configure.ac
can be found in two ways: either by relying on the FRAMAC_SHARE shell variable (when Frama-
C is not installed, i.e. when configuring the plug-in together with the main Frama-C), or
by calling an installed Frama-C (when installing the plug-in separately). The inclusion of
configure.ac needs to be guarded to prevent multiple inclusions, as the configuration file
of the plug-in might itself be included by configure.in (see section 4.5.2 for more details).
The configuration of the plug-in itself or related libraries and tools can then proceed as
described in Sections 4.2.2 and 4.2.3. References to specific files in the plug-in source directory
should be guarded with the following macro:

PLUGIN_RELATIVE_PATH(file)

43

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

If the external plug-in has some dependencies as described in sections 4.2.4 and 4.2.5, the
configure script configure must check that all dependencies are met. This is done with the
following macro:

check_plugin_dependencies

An external plug-in can have dependencies upon previously installed plug-ins. However two
separately installed plug-ins can not be mutually dependent on each other. Nevertheless,
they can be compiled together with the main Frama-C sources using the –-enable-external
option of configure (see section 4.5.2 for more details).
Finally, the configuration must end with the following command:

write_plugin_config(files)

where files are the files that must be processed by configure (as in AC_CONFIG_FILESmacro).
PLUGIN_RELATIVE_PATH is unneeded here.

For technical reasons, the macros configure_library, configure_tool,
check_plugin_dependencies, and write_plugin_config must not be inside a
conditional part of the configure script. More precisely, they are using the diversion
mechanism of autoconf in order to ensure that the tests are performed after all
dependencies information has been gathered from all existing plugins. Diversion is a
very primitive, text-to-text transformation. Using those macros within a conditional (or
anything that alters the control-flow of the script) is likely to result in putting some
unrelated part of the script in the same branch of the conditional.

4.4 Frama-C Makefile

Target readers: not for standard plug-in developers.

Prerequisite: knowledge of make.

In this section, we detail the use of Makefile dedicated to Frama-C compilation. This file
is split in several sections which are described in Section 5.3.2. By default, executing make
only displays an overview of commands. For example, here is the output of the compilation
of source file src/kernel/db.cmo.

$ make src/kernel/db.cmo
Ocamlc src/kernel/db.cmo

If you wish the exact command line, you have to set variable VERBOSEMAKE to yes like below.
$ make VERBOSEMAKE=yes src/kernel/db.cmo
ocamlc.opt -c -w +a-4-6-7-9 -annot -warn-error +a-32-33-34-35-36-37-38 -g
-I src/misc -I src/ai -I src/memory_state -I src/toplevel -I src/slicing_types
-I src/pdg_types -I src/kernel -I src/ logic -I src/ lib -I src/type
-I src/project -I src/buckx -I src/gui -I external -I cil /src -I cil /src/ext
-I cil /src/ frontc -I cil /src/ logic -I cil /ocamlutil -I lib/plugins -I lib
src/kernel/db.ml

By default, warnings are considered as errors, but some of the new warnings of OCaml 4.00
are not. If you wish to make them errors as well, set variable WARN_ERROR_ALL to yes3

3this has no effect if you use OCaml < 4.00

44

4.5. PLUG-IN SPECIFIC MAKEFILE

In order to integrate a new plug-in, you have to extend section “Plug-ins”. For this pur-
pose, you have to include share/Makefile.plugin for each new plug-in (hence there are as
many lines include share/Makefile.plugin as plug-ins). Makefile.plugin is a generic
makefile dedicated to plug-in compilation. Before its inclusion, a plug-in developer can set
some variables in order to customize its behavior. These variables are fully described in
Section 5.3.3.

These variables must not be used anywhere else in Makefile. Moreover, for setting them,
you must use := and not =4.

In addition, the results of the configure script must be exported in
share/Makefile.config.in (see section 5.3.2). You must in particular add a line of
the form

ENABLE_plugin=@ENABLE_plugin@

so that make will know whether the plug-in is supposed to compiled or not. Other variables
may be exported there as well (DYNAMIC_plugin, HAS_library) if the corresponding informa-
tion is needed during compilation.

Example 4.3 For compiling the plug-in Rte, the following lines are added into Makefile.

################
RTE analysis
################
PLUGIN_ENABLE:=$(ENABLE_RTE_ANNOTATION)
PLUGIN_NAME:=RteGen
PLUGIN_DIR:=src/rte
PLUGIN_CMO:= rte_parameters rte register
PLUGIN_HAS_MLI:=yes
PLUGIN_DISTRIBUTED:=yes
PLUGIN_INTERNAL_TEST:=yes
include share/Makefile.plugin

As said above, you cannot use the parameters of Makefile.plugin anywhere in Makefile.
You can yet use some plugin-in specific variables once Makefile.plugin has been included.
These variables are detailed in Section 5.3.3.
One other variable has to be modified by a plug-in developer if he uses files which do not
belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO is set). This variable is
UNPACKED_DIRS and corresponds to the list of non plug-in directories containing source files.

A plug-in developer should not have to modify any other part of any Frama-C Makefile.

4.5 Plug-in Specific Makefile

Prerequisite: knowledge of make.

In this section, we detail how to add a Makefile to a plug-in.
4Using := only sets the variable value from the affectation point (as usual in most programming languages)

whereas using = would redefine the variable value for each of its occurrences in the makefile (see Section 6.2
“The Two Flavors of Variables” of the GNU Make Manual [11]).

45

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.5.1 Using Makefile.dynamic

In this section, we detail how to write a Makefile for a given plug-in. Even if it is still
possible to write such a Makefile from scratch, Frama-C provides a generic Makefile, called
Makefile.dynamic, which helps the plug-in developer in this task. This file is installed in
the Frama-C share directory. So for writting your plug-in specific Makefile, you have to:

1. set some variables for customizing your plug-in;

2. include Makefile.dynamic.

Example 4.4 A minimal Makefile is shown below. That is the Makefile of the plug-in
Hello World presented in the tutorial (see Section 2.2). Each variable set in this example
has to be set by any plug-in.

Example of Makefile for dynamic plugins
###

Frama−c should be properly installed with "make install"
before any use of this makefile

FRAMAC_SHARE :=$(shell frama-c.byte -print-path)
FRAMAC_LIBDIR :=$(shell frama-c.byte -print-libpath)
PLUGIN_NAME = Hello
PLUGIN_CMO = hello_world
include $(FRAMAC_SHARE)/Makefile.dynamic

FRAMAC_SHARE must be set to the Frama-C share directory while FRAMAC_LIBDIR must be set
to the Frama-C lib directory. PLUGIN_NAME is the capitalized name of your plug-in while
PLUGIN_CMO is the list of the files .cmo generated from your OCaml sources.

To run your specific Makefile, you must have properly installed Frama-C before.

You may possibly need to do make depend before running make.
Which variable can be set and how they are useful is explained Section 5.3.3. Furthermore,
Section 5.3.4 explains the specific features of Makefile.dynamic.

4.5.2 Compiling Frama-C and external plug-ins at the same time

Target readers: plug-in developers using the SVN repository of Frama-C.

It is also possible to have a completely independent plug-in recompile and test together with
Frama-C’s kernel. For that, Frama-C must be aware of the existence of the plug-in. This can
be done in two ways:

• All sub-directories of src/ directory in Frama-C sources which are not known to Frama-
C’s kernel are assumed to be external plug-ins.

• One can use the --enable-external option of configure which takes as argument the
path to the plug-in

46

4.6. TESTING

In the first case, the plug-in behaves as any other built-ins plug-ins: autoconf run in Frama-
C’s main directory will take care of it and it can be enabled or disabled in the same way as
the others. If the plug-in has its own configure.in or configure.ac file, the configuration
instructions contained in it (in particular additional dependencies) will be read as well.
In the second case, the plug-in is added to the list of external plug-ins at configure time. If
the plug-in has its own configure, it is run as well.

4.6 Testing

In this section, we present ptests, a tool provided by Frama-C in order to perform non-
regression and unit tests.
ptests runs the Frama-C toplevel on each specified test (which are usually C files). Specific
directives can be used for each test. Each result of the execution is compared from the
previously saved result (called the oracle). A test is successful if and only if there is no
difference. Actually the number of results is twice that the number of tests because standard
and error outputs are compared separately.
First Section 4.6.1 shows how to use ptests. Next Section 4.6.2 introduces how to use prede-
fined directives to configure tests, while Section 4.6.3 explains how to set up various testing
goals for the same test base. Last Section 4.6.4 details ptests’ options, while Section 4.6.5
describes ptests’ directive.

4.6.1 Using ptests

If you’re using a Makefile written following the principles given in section 4.5, the simplest
way of using ptests is through make tests which is roughly equivalent to

$ time ./bin/ptests.opt

or
$ time ptests.opt

depending on whether you’re inside Frama-C’s sources or compiling a plug-in against an
already installed Frama-C distribution.
A specific target $(PLUGIN_NAME)_TESTS will specifically run the tests of the plugin. One
can add new tests as dependencies of this target. The default tests are run by the target
$(PLUGIN_NAME)_DEFAULT_TESTS.
ptests.opt runs tests belonging to a sub-directory of directory tests that is specified in
ptests configuration file. This configuration file, tests/ptests_config, is automatically
generated by Frama-C’s Makefile from the options you set in your plugin’s Makefile. ptests
also accepts specific test suites in arguments. A test suite is either the name of a sub-directory
in directory tests or a filename (with its path relative to the current directory).

Example 4.5 If you want to test plug-in sparecode and specific test
tests/pdg/variadic.c, just run

$./bin/ptests.opt sparecode tests/pdg/variadic.c

which should display (if there are 7 tests in directory tests/sparecode)

47

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished . Summary:
Run = 8
Ok = 16 of 16

ptests accepts different options which are used to customize test sequences. These options
are detailed in Section 4.6.4.

Example 4.6 If the code of plug-in plug-in has changed, a typical sequence of tests is the
following one.

$./bin/ptests.opt plug-in
$./bin/ptests.opt -update plug-in
$ make tests

So we first run the tests suite corresponding to plug-in in order to display what tests have
been modified by the changes. After checking the displayed differences, we validate the changes
by updating the oracles. Finally we run all the test suites in order to ensure that the changes
do not break anything else in Frama-C.

Example 4.7 For adding a new test, the typical sequence of command is the following.
$./bin/ptests.opt -show tests/plug-in/new_test.c
$./bin/ptests.opt -update tests/plug-in/new_test.c
$ make tests

We first ask ptests to print the output of the test on the command line, check that it corre-
sponds to what we expect, and then take it as the initial oracle. If some changes have been
made to the code in order to let new_test.c pass, we must of course launch the whole test
suite and check that all existing tests are alright.

If you’re creating a whole new test suite suite, don’t forget to create the sub-directories
suite/result and suite/oracle where ptests will store the current results and the ora-
cles for all the tests in suite

4.6.2 Configuration

In order to exactly perform the test that you wish, some directives can be set in three different
places. We indicate first these places and next the possible directives.
The places are:

• inside file tests/test_config;

• inside file tests/subdir/test_config (for each sub-directory subdir of tests); or

• inside each test file, in a special comment of the form
/* run.config

... directives ...
*/

48

4.6. TESTING

In each of the above case, the configuration is done by a list of directives. Each directive has
to be on one line and to have the form

CONFIG_OPTION:value

There is exactly one directive by line. The different directives (i.e. possibilities for
CONFIG_OPTION) are detailed in Section 4.6.5.

Note that some specific configurations require dynamic linking, which is not available on
all platforms for native code. ptests takes care of reverting to bytecode when it detects
that the OPT or EXECNOW options of a test require dynamic linking. This occurs currently
in the following cases:

• OPT contains the option -load-script

• OPT contains the option -load-module

• EXECNOW use make to create a .cmxs

Example 4.8 Test tests/sparecode/calls.c declares the following directives.
/* run.config

OPT: -sparecode-analysis
OPT: -slicing-level 2 -slice-return main -slice-print

*/

These directives state that we want to test sparecode and slicing analyses on this file. Thus
running the following instruction executes two test cases.

$./bin/ptests.opt tests/sparecode/ calls .c
% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished . Summary:
Run = 2
Ok = 4 of 4

4.6.3 Alternative Testing

You may want to set up different testing goals for the same test base. Common cases include:

• checking the result of an analysis with or without an option;

• checking a preliminary result of an analysis, in particular if the complete analysis is
costly;

• checking separately different results of an analysis.

This is possible with option -config of ptests, which takes as argument the name of a special
test configuration, as in

$./bin/ptests.opt -config <special_name> plug-in

Then, the directives for this test can be found:

• inside file tests/test_config_<special_name>;

49

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• inside file tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test file, in a special comment of the form
/* run.config_<special_name>

... directives ...
*/

All operations for this test configuration should take option -config in argument, as in
$./bin/ptests.opt -update -config <special_name> plug-in

In addition, option -config <special_name> requires subdirectories
result_<special_name> and oracle_<special_name> to store results and oracle
of the specific configuration.

4.6.4 Detailed options

Figure 4.1 details the options of ptests.

kind Name Specification Default

Toplevel
-add-options Additional options passed to the

toplevel
-byte Use bytecode toplevel no
-opt Use native toplevel yes

Behavior

-run Delete current results; run tests and
examine results

yes

-examine Only examine current results; do
not run tests

no

-show Run tests and show results, but do
not examine them; implies -byte

no

-update Take current results as new oracles;
do not run tests

no

Misc.

-exclude suite Do not consider the given suite
-diff cmd Use cmd to show differences between

results and oracles when examining
results

diff -u

-cmp cmd Use cmd to compare results against
oracles when examining results

cmp -s

-use-diff-as-cmp Use the same command for diff and
cmp

no

-j n Set level of parallelism to n 4
-v Increase verbosity (up to twice) 0

-help Display helps no

Figure 4.1: ptests options.

The commands provided through the -diff and -cmp options play two related but distinct
roles. cmp is always used for each test (in fact it is used twice: one for the standard output

50

4.6. TESTING

and one for the error output). Only its exit code is taken into account by ptests and the
output of cmp is discarded. An exit code of 1 means that the two files have differences. The
two files will then be analyzed by diff, whose role is to show the differences between the
files. An exit code of 0 means that the two files are identical. Thus, they won’t be processed
by diff. An exit code of 2 indicates an error during the comparison (for instance because
the corresponding oracle does not exist). Any other exit code results in a fatal error. It
is possible to use the same command for both cmp and diff with the -use-diff-as-cmp
option, which will take as cmp command the command used for diff.
The -exclude option can take as argument a whole suite or an individual test. It can be
used with any behavior.

4.6.5 Detailed directives

Figure 4.2 shows all the directives that can be used in the configuration header of a test (or
a test suite). Any directive can identify a file using a relative path. The default directory

Kind Name Specification default

Command

CMD Program to run ./bin/toplevel.opt
OPT Options given to the program -val -out -input -deps

STDOPT Add and remove options from
the default set

None

EXECNOW Run a command before the
following commands

None

MACRO Define a new macro None
FILTER Command used to filter re-

sults
None

Test suite DONTRUN Do not execute this test None
FILEREG selects the files to test .*\.\(c|i\)

Miscellaneous COMMENT Comment in the configuration None
GCC Unused (compatibility only) None

Figure 4.2: Directives in configuration headers of test files.

considered for . is always the parent directory of directory tests. The DONTRUN directive
does not need to have any content, but it is useful to provide an explanation of why the test
should not be run (e.g test of a feature that is currently developed and not fully operational
yet). If a test file is explicitly given on the command line of ptests, it is always executed,
regardless of the presence of a DONTRUN directive.
As said in Section 4.6.2, these directives can be found in different places:

1. default value of the directive (as specified in Fig. 4.2);

2. inside file tests/test_config;

3. inside file tests/subdir/test_config (for each sub-directory subdir of tests); or

4. inside each test file

As presented in Section 4.6.3, alternative directives for test configuration <special_name>
can be found in slightly different places:

51

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• default value of the directive (as specified in Fig. 4.2);

• inside file tests/test_config_<special_name>;

• inside file tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test file.

For a given test tests/suite/test.c, each existing file in the sequence above is read in
order and defines a configuration level (the default configuration level always exists).

• CMD allows to change the command that is used for the following OPT directives (until
a new CMD directive is found). No new test case is generated if there is no further OPT
directive. At a given configuration level, the default value for directive CMD is the last
CMD directive of the preceding configuration level.

• If there are several directives OPT in the same configuration level, they correspond to
different test cases. The OPT directive(s) of a given configuration level replace(s) the
ones of the preceding level.

• The STDOPT directive takes as default set of options the last OPT directive(s) of the
preceding configuration level. If the preceding configuration level contains several OPT
directives, hence several test cases, STDOPT is applied to each of them, leading to the
same number of test cases. The syntax for this directive is the following.

STDOPT: [[+#-]"opt" ...]

options are always given between quotes. An option following a + (resp. # is added to
the end (resp. start) of current set of options while an option following a - is removed
from it. The directive can be empty (meaning that the corresponding test will use the
standard set of options). As with OPT, each STDOPT corresponds to a different (set of)
test case(s).

• The syntax for directive EXECNOW is the following.

EXECNOW: [[LOG file | BIN file] ...] cmd

Files after LOG are log files generated by command cmd and compared from oracles,
whereas files after BIN are binary files also generated by cmd but not compared from
oracles. Full access path to these files have to be specified only in cmd. All the commands
described by directives EXECNOW are executed in order and before running any of the
other directives. If the execution of one EXECNOW directive fails (i.e. has a non-zero
return code), the remaining actions are not executed. EXECNOW directives from a given
level are added to the directives of the following levels.

• The MACRO directive has the following syntax:

52

4.7. PLUG-IN GENERAL SERVICES

MACRO: macro-name content

where macro-name is any sequence of characters containing neither a blank nor an @, and
content extends until the end of the line. Once such a directive has been encountered,
each occurrence of @macro-name@ in a CMD, OPT, STDOPT or EXECNOW directive at this
configuration level or in any level below it will be replaced by content. Existing pre-
defined macros are listed in section 5.4.1.

• The FILEREG directive contains a regular expression indicating which files in the direc-
tory containing the current test suite are actually part of the suite. This directive is
only usable in a test_config configuration file.

4.7 Plug-in General Services

Module Plugin provides an access to some general services available for all plug-ins. The
goal of this module is twofold. First, it helps developpers to use general Frama-C services.
Second, it provides to the end-user a set of features common to all plug-ins. To access to
these services, you have to apply the functor Plugin.Register.

Each plug-in must apply this functor exactly once.

Example 4.9 Here is how the plug-in From applies the functor Plugin.Register for its own
use.

include Plugin.Register
(struct

let name = "from analysis"
let shortname = "from"
let help = "functional dependencies"

end)

Applying this functor mainly provides two different services. First it gives access to functions
for printing messages in a Frama-C-compliant way (see Section 4.8). Second it allows to define
plug-in specific parameters available as options on the Frama-C command line to the end-user
(see Section 4.13).

4.8 Logging Services

Displaying results of plug-in computations to users, warning them of the hypothesis taken by
the static analyzers, reporting incorrect inputs, all these tasks are easy to think about, but
turn to be difficult to handle in a readable way. As soon as your plug-in is registered (see
Section 4.7 above), though, you automatically benefit from many logging facilities provided
by the kernel. What is more, when logging through these services, messages from your plug-in
combine with other messages from other plug-ins, in a consistent and user-friendly way.
As a general rule, you should never write to standard output and error channels through
OCaml standard libraries. For instance, you should never use Pervasives.stdout and
Pervasives.stderr channels, nor Format.printf-like routines.

53

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Instead, you should use Format.fprintf to implement pretty-printers for your own complex
data, and only the printf-like routines of Log.Messages to display messages to the user.
All these routines are immediately available from your plug-in general services.

Example 4.10 A minimal example of a plug-in using the logging services:
module Self = Plugin.Register
(struct

let name = "foo plugin"
let shortname = "foo"
let help = "illustration of logging services"

end)

let pp_dg out n =
Format.fprintf out
"you have at least debug %d" n

let run () =
Self. result "Hello, this is Foo Logs !";
Self.debug ∼level:0 "Try higher debug levels (%a)" pp_dg 0;
Self.debug ∼level:1 "If you read this, %a." pp_dg 1;
Self.debug ∼level:3 "If you read this, %a." pp_dg 3;

let () = Db.Main.extend run ()

Running this example, you should see:
$ frama-c -foo-debug 2
[foo] Hello, this is Foo Logs !
[foo] Try high debug levels (you have at least debug 0).
[foo] If you read this, you have at least debug 1.

Notice that your plug-in automatically benefits from its own debug command line parameter,
and that messages are automatically prefixed with the name of the plug-in. We now get into
more details for an advanced usage of logging services.

4.8.1 From printf to Log

Below is a simple example of how to make a printf-based code towards being Log-compliant.
The original code, extracted from the Occurrence plug-in in Frama-C-Lithium version is as
follows:

let print_one v l =
Format.printf "variable %s (%d):@\n" v.vname v.vid;
List. iter
(fun (ki, lv) →

Format.printf " sid %a: %a@\n" d_ki ki d_lval lv)
l

let print_all () =
compute ();
Occurrences. iter print_one

The transformation is straightforward. First you add to all your pretty-printing functions an
additional Format.formatter parameter, and you call fprintf instead of printf:

54

4.8. LOGGING SERVICES

let print_one fmt v l =
Format.fprintf fmt "variable %s (%d):@\n" v.vname v.vid;
List. iter
(fun (ki, lv) →

Format.fprintf fmt " sid %a: %a@\n" d_ki ki d_lval lv)
l

Then, you delegate toplevel calls to printf towards an appropriate logging routine, with a
formatting string containing the necessary "%t" and "%a" formatters:

let print_all () =
compute ();
result "%t" (fun fmt → Occurrences.iter (print_one fmt))

4.8.2 Log Quick Reference

The logging routines for your plug-ins consist in an implementation of the Log.Messages
interface, which is included in the Plugin.S interface returned by the registration of your
plug-in. The main routines of interest are:

result <options> "..."
Outputs most of your messages with this routine. You may specify ∼ level:n option to
discard too detailed messages in conjunction with the verbose command line option.
The default level is 1.

feedback <options> "..."
Reserved for short messages that gives feedback about the progression of long compu-
tations. Typically, entering a function body or iterating during fixpoint computation.
The level option can be used as for result .

debug <options> "..."
To be used for plug-in development messages and internal error diagnosis. You may
specify ∼ level:n option to discard too detailed messages in conjunction with the debug
command line option. The default message level is 1, and the default debugging level
is 0. Hence, without any option, debug discards all its messages.

warning <options> "..."
For reporting to the user an important information about the validity of the analysis
performed by your plug-in. For instance, if you locally assume non arithmetic overflow
on a given statement, etc. Typical options include ∼current:true to localize the message
on the current source location.

error <options> "..."
abort <options> "..."

Use these routines for reporting to the user an error in its inputs. It can be used for
non valid parameters, for instance. It should not be used for some not-yet implemented
feature, however.
The abort routine is a variant that raises an exception and thus aborts the computation.

failure <options> "..."
fatal <options> "..."

Use these routines for reporting to the user that your plug-in is now in inconsistent

55

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

state or can not continue its computation. Typically, you have just discovered a bug in
your plug-in!
The fatal routine is a variant that raises an exception.

verify (condition) <options> "..."
First the routine evaluates the condition and the formatting arguments, then, discards
the message if the condition holds and displays a message otherwise. Finally, it returns
the condition value.
A typical usage is for example:

assert (verify (x>0) "Expected a positive value (%d)" x)

4.8.3 Logging Routine Options

Logging routines have optional parameters to modify their general behavior. Hence their
involved type in Log.mli.

Level Option. A minimal level of verbosity or debugging can be specified for the message
to be emitted. For the result and feedback channels, the verbosity level is used ; for the
debug channel, the debugging level is used.

∼ level:n minimal level required is n.

Category Option Debug, result, and feedback output can be associated to a debugging
key with the optional argument ∼dkey which takes an argument of type category, which
is a private alias for string. Each category must be registered through the register_category
function. You can define subcategories by putting colons in the registered name. For instance
a:b:c defines a subcategory c of a:b, itself a subcategory of a. User can then choose to
output debugging messages belonging to a given category (and its subcategories) with the
-plugin-msg-key <category> option.
In order to decide whether a message should be output, both level and category options are
examined:

• if neither ∼ level nor ∼dkey, the effect is the same as having a level of 1 and no category.

• if only ∼ level is provided, the message is output if the corresponding verbosity or de-
bugging level is sufficient

• if only ∼dkey is used, the message is output if the corresponding category is in used
(even if the verbosity or debugging level is 0)

• if both ∼ level and ∼dkey are present, the message is output if the two conditions above
(sufficient verbosity or debugging level and appropriate category in use) hold.

Source Options. By default, a message is not localized. You may specify a source location,
either specifically or by using the current location of an AST visitor.

∼source:s use the source location s (see Log.mli)

∼current:true use the current source location managed by Cil.CurrentLoc.

56

4.8. LOGGING SERVICES

Emission Options. By default, a message is echoed to the user after its construction, and
it is sent to registered callbacks when emitted. See Section 4.8.4 below for more details on
how to globally modify such a behavior. During the message construction, you can locally
modify the emission process with the following options:

∼emitwith:f suppresses the echo and sends the emitted event only to the callback func-
tion f . Listeners are not fired at all.

∼once:true finally discards the message if the same one was already emitted before with
the ∼once option.

Append Option. All logging routines have the ∼append:f optional parameter, where f is
function taking a Format.formatter as parameter and returning unit. This function f is invoked
to append some text to the logging routine. Such continuation-passing style is sometime
necessary for defining new polymorphic formatting functions. It has been introduced for the
same purpose than standard Format.kfprintf-like functions.

4.8.4 Advanced Logging Services

Message Emission
During message construction, the message content is echoed in the terminal. This echo may
be delayed until message completion when ∼once has been used. Upon message completion,
the message is emitted and sent to all globally registered hook functions, unless the ∼emitwith
option has been used.

To interact with this general procedure, the plug-in developer can use the following functions
defined in module Log:

val set_echo: ?plugin: string → ?kinds:kind list → bool → unit
val add_listener: ?plugin:string → ?kinds:kind list → (event → unit) → unit

Continuations
The logging routines take as argument a (polymorphic) formatting string, followed by the
formatting parameters, and finally return unit. It is also possible to catch the generated
message, and to pass it to a continuation that finally returns a value different than unit.

For this purpose, you must use the with_<log> routines variants. These routines take a
continuation f for additional parameter. After emitting the corresponding message in the
normal way, the message is passed to the continuation f . Hence, f has type event → α, and
the log routine returns α.

For instance, you typically use the following code fragment to return a degenerated value
while emitting a warning:

let rec fact n =
if (n>12) then
with_warning (fun _ → 0) "Overflow for %d, return 0 instead" x

else if n≤1 then 1 else n * fact (n-1)

57

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Generic Routines
The Log.Messages interface provides two generic routines that can be used instead of the basic
ones:

log ?kind ?verbose ?debug <options> "..."
Emits a message with the given kind, when the verbosity and/or debugging level are
sufficient.

with_log f ?kind <options> "..."
Emits a message like log, and finally pass the generated message to the continuation
f , and returns its result.

The default kind is Result, but all the other kind of message can be specified. For verbosity
and debugging levels, the message is emitted when:
log "..." verbosity is at least 1
log ∼verbose:n verbosity is at least n
log ∼debug:n debugging is at least n
log ∼verbose:v ∼debug:d either verbosity is at least v

or debugging is at least d.

Channel Management
The logging services are build upon channels, which are basically buffered formatters to
standard output extended with locking, delayed echo, and notification services.
The very safe feature of logging services is that recursive calls are protected. A message is
only echoed upon termination, and a channel buffer is stacked only if necessary to preserve
memory.
Services provided at plug-in registration are convenient shortcuts to low-level logging service
onto channels. The Log interface allows you to create such channels for your own purposes.
Basically, channels ensure that no message emission interfere with each others during echo
on standard output. Hence the forbidden direct access to Pervasives.stdout. However, Log
interface allows you to create such channels on your own, in addition to the one automatically
created for your plug-in.

new_channel name
This creates a new channel. There is only one channel per name, and the function
returns the existing one if any. Plug-in channels are registered under their short-name,
and the kernel channel is registered under Log.kernel_channel_name.

log_channel channel ?kind ?prefix
This routine is similar to the log one.

with_log_channel channel f ?kind ?prefix
This routine is similar to the with_log one.

With both logging routines, you may specify a prefix to be used during echo. The available
switches are:

Label t: use the string t as a prefix for the first echoed line of text, then use an inden-
tation of same length for the next lines.

58

4.9. THE TYPE LIBRARY: TYPE VALUES AND DATATYPES

Prefix t: use the string t as a prefix for all lines of text.

Indent n: use an indentation of n spaces for all lines of text.

When left unspecified, the prefix is computed from the message kind and the channel name,
like for plug-ins.

Output Management

It is possible to ask Log to redirect its output to another channel:

set_output out flush
The parameters are the same than those of Format.make_formatter: out outputs a (sub)-
string and flush actually writes the buffered text to the underlying device.

It is also possible to have a momentary direct access to Pervasives.stdout, or whatever its
redirection is:

print_on_output "..."
The routine immediately locks the output of Log and prints the provided message. All
message echoes are delayed until the routine actually returns. Notification to listeners
is not delayed, however.

print_delayed "..."
This variant locks the output only when the first character would be written to output.
This gives a chance to a message to be echoed before your text is actually written.

Remark that these two routines can not be recursively invoked, since they have a lock to a non-
delayed output channel. This constraint is verified at runtime to avoid incorrect interleaving,
and you would get a fatal error if the situation occurs.

Warning: these routine are dedicated to expensive output only. You get the advantage of
not buffering your text before printing. But on the other hand, if you have messages to be
echoed during printing, they must be stacked until the end of your printing.

You get a similar functionality with Kernel_function.CodeOutput.output. This routine prints
your text by calling Log.print_delayed, unless the command line option -ocode has been set.
It this case, your text is written to the specified file.

4.9 The Type library: Type Values and Datatypes

Type values and datatypes are key notions of Frama-C. They are both provided by the Type
library. An overview as well as technical details may also be found in a related article in
French [20]. A short summary focusing on (un)marshaling is described in another article [7].
First, Section 4.9.1 introduces type values. Then Section 4.9.2 introduces datatypes built on
top of type values.

59

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.9.1 Type Value

A type value is an OCaml value which dynamically represents a static monomorphic OCaml
type τ . It gets the type τ Type.t. There is at most one type value which represents the type
τ . Type values are used by Frama-C to ensure safety when dynamic typing is required (for
instance to access to a dynamic plug-in API, see Section 4.10.3).
Type values for standard OCaml monomorphic types are provided in module Datatype.

Example 4.11 The type value for type int is Datatype.int while the one for type string
is Datatype.string. The former has type int Type.t while the latter has type string
Type.t.

Type values are created when building datatypes (see Section 4.9.2). There is no type value
for polymorphic types. Instead, they have to be created for each instance of a polymorphic
type. Functions for accessing such type values for standard OCaml polymorphic types are
provided in moduleDatatype.

Example 4.12 The type value for type int list is Datatype.list Datatype.int
while the one for type string →char →bool is Datatype.func2 Datatype.string
Datatype.char Datatype.bool. The former has type int list Type.t while the latter
has type (string →char →bool) Type.t.

4.9.2 Datatype

A datatype provides in a single module a monomorphic type and usual values over it. Its
signature is Datatype.S. It contains the type itself, the type value corresponding to this
type, its name, functions equal, compare, hash and pretty which may respectively be
used to check equality, to compare, to hash and to pretty print values of this type. It
also contains some other values (for instance required when marshaling or journalizing).
Whenever possible, a datatype implements an extensible version of Datatype.S, namely
Datatype.S_with_collections. For a type τ , this extended signature additionally provides
modules Set, Map and Hashtbl respectively implementing sets over τ , maps and hashtables
indexed by elements of τ .
Datatypes for OCaml types from the standard library are provided in module Datatype, while
those for AST’s types are provided in module Cil_datatype. Furthermore, when a kernel
module implements a datastructure, it usually implements Datatype.S.

Example 4.13 The following line of code pretty prints whether two statements are equal.
(∗ assumed the type of [stmt1] and [stmt2] is Cil_types.stmt ∗)
Format.fprintf
fmt (∗ a formatter previously defined somewhere ∗)
"statements %a and %a are %sequal"
Cil_datatype.Stmt.pretty stmt1
Cil_datatype.Stmt.pretty stmt2
(if Cil_datatype.Stmt.equal stmt1 stmt2 then "" else "not ")

Example 4.14 Module Datatype.String implements Datatype.S_with_collections.
Thus you can initialize a set of strings in the following way.

60

4.9. THE TYPE LIBRARY: TYPE VALUES AND DATATYPES

let string_set =
List. fold_left
(fun acc s → Datatype.String.Set.add s acc)
Datatype.String.Set.empty
["foo"; "bar"; "baz"]

Building Datatypes
For each monomorphic type, the corresponding datatype may be created by applying the
functor Datatype.Make. In addition to the type t corresponding to the datatype, several
values must be provided in the argument of the functor. These values are properly doc-
umented in the Frama-C API. The following example introduces them in a practical way.

Example 4.15 Here is how to define in the more precise way the datatype corresponding to
a simple sum type.

type ab = A | B of int
module AB =
Datatype.Make
(struct

(∗ the type corresponding to the datatype ∗)
type t = ab
(∗ the unique name of the built datatype; usually the name of the

type ∗)
let name = "ab"
(∗ representents of the type: a non−empty list of values of this type. It

is only used for safety check: the best the list represents the
different possible physical representation of the type, the best the
check is. ∗)

let reprs = [A; B 0]
(∗ structural descriptor describing the physical representation of the

type. It is used when marshaling. ∗)
let structural_descr =
Structural_descr.Structure
(Structural_desr.Sum [| [| Structural_descr.p_int |] |])

(∗ equality, compare and hash are the standard OCaml ones ∗)
let equal (x:t) y = x = y
let compare (x:t) y = Pervasives.compare x y
let hash (x:t) = Hashtbl.hash x
(∗ the type ab is a standard functional type, thus copying and rehashing

are simply identity. Rehashing is used when marshaling. ∗)
let copy = Datatype.identity
let rehash = Datatype.identity
(∗ the type ab does never contain any value of type Project.t ∗)
let mem_project = Datatype.never_any_project
(∗ pretty printer ∗)
let pretty fmt x =
Format.pp_print_string fmt
(match x with A → "a" | B n → "b" ^ string_of_int n)

(∗ printer which must produce a valid OCaml value in a given
context. It is used when journalising. ∗)

let internal_pretty_code prec_caller fmt = function
| A →
Type.par

61

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

prec_caller
Type.Basic
fmt
(fun fmt → Format.pp_print_string fmt "A")

| B n →
Type.par

prec_caller
Type.Call
fmt
(fun fmt → Format.fprintf fmt "B %d" n)

(∗ A good prefix name to use for an OCaml variable of this type. ∗)
let varname v = "ab" ^ (match v with A → "_a_" | B → "_b_")

end)

Only providing an effective implementation for the values name and reprs is mandatory.
For instance, if you know that you never journalize a value of a type t, you can define
the function internal_pretty_code equal to the predefined function Datatype.pp_fail.
Similarly, if you never use values of type t as keys of hashtable, you can define the function
hash equal to the function Datatype.undefined , and so on. To ease this process, you can
also use the predefined structure Datatype.Undefined.

Example 4.16 Here is a datatype where only the function equal is provided.
(∗ the same type than the one of the previous example ∗)
type ab = A | B of int
module AB =
Datatype.Make
(struct

type t = ab
let name = "ab"
let reprs = [A; B 0]
include Datatype.Undefined
let equal (x:t) y = x = y

end)

One weakness of Datatype.Undefined is that it cannot be used in a projectified state
(see Section 4.12.2) because its values cannot be serializable. In such a case, you can
use the very useful predefined structure DatatypeSerializable_undefined which behaves as
Datatype.Undefined but defines the values which are relevant for (un)serialization.

Datatypes of Polymorphic Types
As for type values, it is not possible to create a datatype correspondign to polymorphic types,
but it is possible to create them for each of their monomorphic instances.

For building such instances, you must not apply the functor Datatype.Make since it will
create two type values for the same type (and with the same name): that is forbidden.

Instead, you must use the functor Datatype.Polymorphic for types with one type variable
and the functor Datatype.Polymorphic2 for types with two type variables. These functors
takes as argument how to build the datatype corresponding each monomorphic instance.

Example 4.17 Here is how to apply Datatype.Polymorphic corresponding to the type ’a
t below.

62

4.9. THE TYPE LIBRARY: TYPE VALUES AND DATATYPES

type α ab = A of α| B of int
module Poly_ab =
Datatype.Polymorphic
(struct

type α t = αab
let name ty = Type.name ty ^ " ab"
let module_name = "Ab"
let reprs ty = [A ty]
let structural_descr d =
Structural_descr.Structure
(Structural_descr.Sum
[| [| Structural_descr.pack d |]; [| Structural_descr.p_int |] |]

let mk_equal f x y = match x, y with
| A x, A y → f x y
| B x, B y → x = y
| A _, B _ | B _, A _ → false

let mk_compare f x y = match x, y with
| A x, A y → f x y
| B x, B y → Pervasives.compare x y
| A _, B _ → 1
| B _, A _ → -1

let mk_hash f = function A x → f x | B x → 257 * x
let map f = function A x → A (f x) | B x → B x
let mk_internal_pretty_code f prec_caller fmt = function
| A x →
Type.par

prec_caller
Type.Basic
fmt
(fun fmt → Format.fprintf fmt "A %a" (f Type.Call) x)

| B n →
Type.par

prec_caller
Type.Call
fmt
(fun fmt → Format.fprintf fmt "B %d" n)

let mk_pretty f fmt x =
mk_internal_pretty_code (fun _ → f) Type.Basic fmt x

let mk_varname _ = "ab"
let mk_mem_project mem f = function
| A x → mem f x
| B _ → false

end)
module Ab = Poly_AB.Make

(∗ datatype corresponding to the type [int ab] ∗)
module Ab_int = Ab(Datatype.Int)

(∗ datatype corresponding to the type [int list ab] ∗)
module Ab_Ab_string = Ab(Datatype.List(Datatype.Int))

(∗ datatype corresponding to the type [(string, int) Hashtbl.t ab] ∗)
module HAb = Ab(Datatype.String.Hashtbl.Make(Datatype.Int))

Clearly it is a bit painful. However you probably will never apply this functor yourself. It is
already applied for the standard OCaml polymorphic types like list and function (respectively

63

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Datatype.List and Datatype.Function).

4.10 Plug-in Registration and Access

In this section, we present how to register plug-ins and how to access them. Actually there
are three different ways, but the recommended one is through a .mli file.
Section 4.10.1 indicates how to register and access a plug-in through a .mli file. Section 4.10.2
indicates how to register and access a kernel-integrated plug-in while Section 4.10.3 details
how to register and access a standard plug-in.

4.10.1 Registration through a .mli File

Target readers: plug-in developers.

Prerequisite: Basic knowledge of make and OCaml.

Each plug-in is compiled into a module of name indicated by the variable PLUGIN_NAME of its
Makefile (say Plugin_A. If this Makefile also set PLUGIN_HAS_MLI to yes, then its developer
has to provide a .mli for this plug-in (following the previous example, a file Plugin_A.mli).
This .mli file may thus contains the API of the plug-in.
Another plug-in may then access to Plugin_A as it accesses any other OCaml module, but
it has to declare in its Makefile that it depends on Plugin_A through the special variable
PLUGIN_DEPENDENCIES.

Example 4.18 Plugin_A declares and provides access to a function compute in the following
way.

File File plugin_a/my_analysis_a.ml

let compute () = ...

File File plugin_a/Plugin_A.mli

module My_analysis_a: sig val compute: unit → unit

File File plugin_a/Makefile

PLUGIN_NAME:=Plugin_A
PLUGIN_CMO:=... my_analysis_a ...
PLUGIN_HAS_MLI:=yes
...
include Makefile.dynamic

Then, Plugin_B may use this function Compute as follows.

File File plugin_b/my_analysis_b.ml

let compute () = ... Plugin_A.My_analysis_a.compute () ...

File File plugin_b/Makefile

64

4.10. PLUG-IN REGISTRATION AND ACCESS

PLUGIN_NAME:=Plugin_B
PLUGIN_CMO:=... my_analysis_b ...
PLUGIN_DEPENDENCIES:=Plugin_A
...
include Makefile.dynamic

4.10.2 Kernel-integrated Registration and Access

Target readers: kernel-integrated plug-in developers.

Prerequisite: Accepting to modify the Frama-C kernel. Otherwise, you can still register
your plug-in as any standard plug-in (see Section 4.10.3 for details).

A database, called Db (in directory src/kernel), groups together the API of all kernel-
integrated plug-ins. So it permits easy plug-in collaborations. Each kernel-integrated plug-in
is only visible through Db. For example, if a plug-in A wants to know the results of another
plug-in B, it uses the part of Db corresponding to B. A consequence of this design is that each
plug-in has to register in Db by setting a function pointer to the right value in order to be
usable from others plug-ins.

Example 4.19 Plug-in Impact registers function compute_pragmas in the following way.

File src/impact/register.ml

let compute_pragmas () = ...
let () = Db.Impact.compute_pragmas ←compute_pragmas

So each developer who wants to use this function calls it by pointer dereferencing like this.
let () = !Db.Impact.compute_pragmas ()

If a kernel-integrated plug-in has to export some datatypes usable by other plug-ins, such
datatypes have to be visible from module Db. Thus they cannot be declared in the plug-in
implementation itself like any other plug-in declaration because postponed type declarations
are not possible in OCaml.
Such datatypes are called plug-in types. The solution is to put these plug-ins types in some
files linked before Db; hence you have to put them in another directory than the plug-in
directory. The best way is to create a directory dedicated to types.

Recommendation 4.2 The suggested name for this directory is p_types for a plug-in p.

If you add such a directory, you also have to modify Makefile by extending variable
UNPACKED_DIRS (see Section 5.3.3).

Example 4.20 Suppose you are writing a plug-in plug-in which exports a specific type
t corresponding to the result of the plug-in analysis. The standard way to proceed is the
following.

File src/plugin_types/plugin_types.mli

65

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

type t = ...

File src/kernel/db.mli

module Plugin : sig
val run_and_get: (unit → Plugin_types.t) ref

(∗∗ Run plugin analysis (if it was never launched before).
@return result of the analysis. ∗)

end

File Makefile

UNPACKED_DIRS= ... plugin_types
Extend this variable with the new directory

This design choice has a side effect : it reveals exported types. You can always hide them
using a module to encapsulate the types (and provide corresponding getters and setters to
access them).
At this point, part of the plug-in code is outside the plug-in implementation. This code
should be linked before Db 5.
To this effect, the files containing the exterior plug-in code must be added to the Makefile
variable PLUGIN_TYPES_CMO (see Section 5.3.3).

4.10.3 Dynamic Registration and Access

Target readers: standard plug-ins developers.

Registration of kernel-integrated plug-ins requires to modify module Db which belongs to
the Frama-C kernel. Such a modification is not possible for standard plug-ins which are
fully independent of Frama-C. Consequently, the Frama-C kernel provides another way for
registering a plug-in through the module Dynamic.
In short, you have to use the function Dynamic.register in order to register a value from
a dynamic plug-in and you have to use function Dynamic.get in order to apply a function
previously registered with Dynamic.register.

Registering a value
The signature of Dynamic.register is as follows.

val register : plugin: string → string → αType.t → journalize:bool → α→
unit

The first argument is the name of the plug-in registering the value and the second one is a
binding name of the registered OCaml value. The pair (plug-in name, binding name) must
not be used for value registration anywhere else in Frama-C. It is required for another plug-in
in order to access to this value (see next paragraph). The third argument is the type value of
the registered value (see Section 4.9.1). It is required for safety reasons when accessing to the
registered value (see the next paragraph). The labeled fourth argument journalize indicates
whether a total call to this function must be written in the journal (see also Section 4.11).
The usual value for this argument is true. The fifth argument is the value to register.

5A direct consequence is that you cannot use the whole Frama-C functionalities, such as module Db, inside
this code.

66

4.10. PLUG-IN REGISTRATION AND ACCESS

Example 4.21 Here is how the function run of the plug-in hello of the tutorial is registered.
The type of this function is unit → unit.

let run () : unit = ...
let () =
Dynamic.register

∼plugin:"Hello"
"run"
(Datatype.func Datatype.unit Datatype.unit)
∼ journalize :true
run

If the string "Hello.run" is already used to register a dynamic value, then the exception
Type.AlreadyExists is raised during plug-in initialization (see Section 4.14).
The function call Datatype.func Datatype.unit Datatype.unit returns the type value
representing unit → unit. Note that, because of the type of Dynamic.register and the
types of its arguments, the OCaml type checker complains if the third argument (here the
value run) has not the type unit → unit.

Accessing to a registered value
The signature of function Dynamic.get is as follows.

val get: plugin: string → string → αType.t → α

The arguments must be the same than the ones used at value registration time (with
Dynamic.register). Otherwise, depending on the case, you will get a compile-time or a
runtime error.

Example 4.22 Here is how the previously registered function run of Hello may be applied.
let () =
Dynamic.get

∼plugin:"Hello"
"run"
(Datatype.func Datatype.unit Datatype.unit)
()

The given strings and the given type value must be the same than the ones used when reg-
istering the function. Otherwise, an error occurs at runtime. Furthermore, the OCaml type
checker will complain either if the third argument (here ()) is not of type unit or if the
returned value (here () also) is not of type unit.

The above-mentionned mechanism requires to access to the type value corresponding to the
type of the registered value. Thus it is not possible to access to a value of a plug-in-defined
type. For solving this issue, Frama-C provides a way to access to type values of plug-in-defined
types in an abstract way through the functor Type.Abstract.

Example 4.23 There is no current example in the Frama-C open-source part, but consider
a plug-in which provides a dynamic API for callstacks as follows.

module P =
Plugin.Register
(struct

67

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

let name = "Callstack"
let shortname = "Callstack"
let help = "callstack library"

end)

(∗ A callstack is a list of a pair (kf ∗ stmt) where [kf] is the kernel
function called at statement [stmt]. Building the datatype also creates the
corresponding type value [ty]. ∗)

type callstack = (Kernel_function.t * Cil_datatype.Stmt.t) list

(∗ Implementation ∗)
let empty = []
let push kf stmt stack = (kf, stmt) :: stack
let pop = function [] → [] | _ :: stack → stack
let rec print = function
| [] → P.feedback ""
| (kf, stmt) :: stack →
P.feedback "function %a called at stmt %a"
Kernel_function.pretty kf
Cil_datatype.Stmt.pretty stmt;

print stack

(∗ Type values ∗)
let kf_ty = Kernel_function.ty
let stmt_ty = Cil_datatype.Stmt.ty

module D =
Datatype.Make
(struct
type t = callstack
let name = "Callstack.t"
let reprs = [empty; [Kernel_function.dummy (), Cil.dummyStmt]]
include Datatype.Serializable_undefined

end)

(∗ Dynamic API registration ∗)
let register name ty =
Dynamic.register ∼plugin:"Callstack" ∼journalize:false name ty

let empty = register "empty" D.ty empty
let push = register "push" (Datatype.func3 kf_ty stmt_ty D.ty D.ty) push
let pop = register "pop" (Datatype.func D.ty D.ty) pop
let print = register "print" (Datatype.func D.ty Datatype.unit) print

You have to use the functor Type.Abstract to access to the type value corresponding to the
type of callstacks (and thus to access to the above dynamically registered functions).

(∗ Type values ∗)
let kf_ty = Kernel_function.ty
let stmt_ty = Cil_datatype.Stmt.ty

(∗ Access to the type value for abstract callstacks ∗)
module C = Type.Abstract(struct let name = "Callstack.t" end)

let get name ty = Dynamic.get ∼plugin:"Callstack" name ty

(∗ mutable callstack ∗)

68

4.11. JOURNALIZATION

let callstack_ref = ref (get "empty" C.ty)

(∗ operations over this mutable callstack ∗)

let push_callstack =
(∗ getting the function outside the closure is more efficient ∗)
let push = get "push" (Datatype.func3 kf_ty stmt_ty C.ty C.ty) in
fun kf stmt → callstack_ref ←push kf stmt !callstack_ref

let pop_callstack =
(∗ getting the function outside the closure is more efficient ∗)
let pop = get "pop" (Datatype.func C.ty C.ty) in
fun () → callstack_ref ←pop !callstack_ref

let print_callstack =
(∗ getting the function outside the closure is more efficient ∗)
let print = get "print" (Datatype.func C.ty Datatype.unit) in
fun () → print !callstack_ref

(∗ ... algorithm using the callstack ... ∗)

4.11 Journalization

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

4.12 Project Management System

Prerequisite: knowledge of OCaml module system and labels.

In Frama-C, a key notion detailed in this section is the one of project. An overview as well
as technical details may also be found in a related article in French [19]. Section 4.12.1
first introduces the general principle of project. Section 4.12.2 introduces the notion of
states. State registration is detailed in Sections 4.12.3 and 4.12.4. The former is dedicated to
standard (high-level) registration, while the latter is dedicated to low-level registration. Then
Section 4.12.5 explains how to use project. Finally Section 4.12.6 details state selections.

4.12.1 Overview and Key Notions

A project group together an AST with the set of global values attached to it. Such values
are called states. Examples of states are parameters (see Section 4.13), results of analyses
(Frama-C extensively uses memoization [16, 17] in order to prevent running analysis twice).
In a Frama-C session, several project (and thus several ASTs) can exist at the same time. The
project library ensures project non-interference: modifying the value of a state in a project
does not impact any value of any project in any other project. For ensuring this property,
each state must be registered in the project library as explained in Sections 4.12.3 and 4.12.4.
Such relation between states and projects are summarized in Figure 4.3.
To ease development, Frama-C maintains a current project (Project.current ()): all opera-
tions are automatically performed on. For instance, calling Ast.get () returns the Frama-C

69

http://bts.frama-c.com

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

States
Projects Project p1 . . . Project pn

AST a value of a in p1 . . . value of a in pn

data d1 value of d1 in p1 . . . value of d1 in pn

.
data dm value of dm in p1 . . . value of dm in pn

Figure 4.3: Representation of the Frama-C State.

AST of the current project. It is also possible to access to values in others projects as
explained in Section 4.12.5.

4.12.2 State: Principle

If a data should be part of the state of Frama-C, you must register it in the project library
(see Sections 4.12.3 and 4.12.4).

Here we first explain what are the functionalities of each state and then we present the general
principle of registration.

State Functionalities
Whenever you want to attach a data (e.g. a table containing results of an analysis) to an
AST, you have to register it as an internal state. The main functionalities provide to each
internal state are the following.

• It is automatically updated whenever the current project changes: so your data is
always consistent with the current project. More precisely, you still work with your
global data (for instance, a hashtable or a reference) as usual in OCaml. The project
library silently changes this data when required (usually when the current project is
changing). The extra cost due to the project system is usually an extra indirection.
Figure 4.4 summarizes these interactions between the project library and your state.

• It is part of the information saved on disk for restoration in a later session.

• It may be part of a selection which is consistent set of states. Which such a selection,
you can control on which states project operations are consistently applied (see Sec-
tion 4.12.6). For example, it is possible to clear all the states which depend on the
value analysis’ results.

• It is possible to ensure inter-analysis consistency by setting state dependencies.
For example, if the entry point of the analysed program is changed (using
Globals.set_entry_point), all the results of analyses depending on it (like value
analysis’ results) are automatically reset. If such a reset was not performed, the results
of the value analysis would not be consistent anymore with the current entry point,
leading to incorrect results.

Example 4.24 Suppose that the value analysis has previously been computed.

70

4.12. PROJECT MANAGEMENT SYSTEM

...

...

...

...

Project 1

Project p

Client 1 =

Client n =

project

current

State 1

State n

State 1

State n

local version of state 1

local version of state n

answer n

answer 1

request

broadcasting

Server = Project Library

Figure 4.4: Interaction between the project library and your registered global data.

Format.printf "%B@." (Db.Value.is_computed ()); (∗ true ∗)
Globals.set_entry_points "f" true;
Format.printf "%B@." (Db.Value.is_computed ()); (∗ false ∗)

As the value analysis has been automatically reset when setting the entry point, the
above code outputs

true
false

State Registration: Overview

For registering a new state, functor State_builder.Register is provided. Its use is de-
scribed in Section 4.12.4 but it is a low-level functor which is usually difficult to apply in a
correct way. Higher-level functors are provided to the developer in modules State_builder
and Cil_state_builder that allow the developer to register states in a simpler way. They
internally apply the low-level functor in the proper way. Module State_builder provides
state builders for standard OCaml datastructures like hashtables whereas Cil_state_builder
does the same for standard Cil datastructures (like hashtables indexed by AST statements)6.
They are described in Section 4.12.3.

Registering a new state must be performed when the plugin is initialized. Thus, using
OCaml let module construct to register the new state is forbidden (except if you really
know what you are doing).

6These datastructures are only mutable datastructures (like hashtables, arrays and references) because
global states are always mutable.

71

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.12.3 Registering a New State

Here we explain how to register and use a state. Registration through the use of the low-level
functor State_builder.Register is postponed in Section 4.12.4 because it is more tricky
and rarely useful.
In most non-Frama-C applications, a state is a global mutable value. One can use it in to
store results of analyses. For example, using this mecanism inside Frama-C to create a state
which would memoize some information attached to statements would result in the following
piece of codew.

open Cil_datatype
type info = Kernel_function.t * Cil_types.varinfo
let state : info Stmt.Hashtbl.t = Stmt.Hashtbl.create 97
let compute_info (kf,vi) = ...
let memoize s =
try Stmt.Hashtbl.find state s
with Not_found → Stmt.Hashtbl.add state s (compute_info s)

let run () = ... !Db.Value.compute (); ... memoize some_stmt ...

However, if one puts this code inside Frama-C, it does not work because this state is not
registered as a Frama-C state. For instance, it is never saved on the disk and its value is
never changed when setting the current project to a new one. For this purpose, one has to
transform the above code into the following one.

module State =
Cil_state_builder.Stmt_hashtbl
(Datatype.Pair(Kernel_function)(Cil_datatype.Varinfo))
(struct

let size = 97
let name = "state"
let dependencies = [Db.Value.self]

end)
let compute_info (kf,vi) = ...
let memoize = State.memo compute_info
let run () = ... !Db.Value.compute (); ... memoize some_stmt ...

A quick look on this code shows that the declaration of the state itself is more complicated
(it uses a functor application) but its use is simpler. Actually what has changed?

1. To declare a new internal state, apply one of the predefined functors in modules
State_builder or Cil_state_builder (see interfaces of these modules for the list
of available modules). Here we use Cil_state_builder.Stmt_hashtbl which provides
an hashtable indexed by statements. The type of values associated to statements is a
pair of Kernel_function.t and Cil_types.varinfo. The first argument of the func-
tor is then the datatype corresponding to this type (see Section 4.9.2). The second
argument provides some additional information: the initial size of the hashtable (an
integer similar to the argument of Hashtbl.create), an unique name for the resulting
state and its dependencies. This list of dependencies is built upon values self which
are called state kind (or simply kind) and are part of any state’s module (part of the
signature of the low-level functor State_builder.Register). This value represents the
state itself as first-class value (like type values for OCaml types, see Section 4.9.1).

2. From outside, a state actually hides its internal representation in order to ensure some
invariants: operations on states implementing hashtable does not take an hashtable in

72

4.12. PROJECT MANAGEMENT SYSTEM

argument because they implicitly use the hidden hashtable. In our example, a prede-
fined memo function is used in order to memoize the computation of compute_info.
This memoization function implicitly operates on the hashtable hidden in the internal
representation of State.

Postponed dependencies Sometimes, you want to access to a state kind before defining
it. That is usually the case when you have two mutually-dependent states: the dependencies
of the first one providing when registering it must contain the state kind of the second
one which is created by registering it. But this second registration also requires a list of
dependencies containing the first state kind.

For solving this issue, it is possible to postpone the addition of a state kind to dependencies
until all modules have been initialized. However, dependencies must be correct before any-
thing serious is computed by Frama-C. So the right way to do this is the use of the function
Cmdline.run_after_extended_stage (see Section 4.14 for advanced explanation about the
way Frama-C is initialized).

Example 4.25 Plug-in from puts a reference to its state kind in the following way. This
reference is initialized at module initialization time.

File src/kernel/db.mli

module From = struct
...
val self : State.t ref

end

File src/kernel/db.ml

module From = struct
...
val self = ref State.dummy (∗ postponed ∗)

end

File src/from/functionwise.ml

module Tbl =
Kernel_function.Make_Table
(Function_Froms)
(struct

let name = "functionwise_from"
let size = 97
let dependencies = [Db.Value.self]

end)
let () =
(∗ performed at module initialization runtime. ∗)
Db.From.self ←Tbl.self

Plug-in pdg uses from for computing its own internal state. So it declares this dependency
as follow.

File src/pdg/register.ml

73

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

module Tbl =
Kernel_function.Make_Table
(PdgTypes.Pdg)
(struct

let name = "Pdg.State"
let dependencies = [] (∗ postponed because !Db.From.self may

not exist yet ∗)
let size = 97

end)
let () =
Cmdline.run_after_extended_stage
(fun () →

State_dependency_graph.add_codependencies
∼onto:Tbl.self
[!Db.From.self])

Dependencies over the AST Most internal states depend directly or indirectly on the
AST of the current project. However, the AST plays a special role as a state. Namely, it
can be changed in place bypassing the project mechanism. In particular, it is possible to
add globals. Plugins that perform such changes should inform the kernel when they are done
using Ast.mark_as_changed or Ast.mark_as_grown. The latter must be used when the only
changes are additions, leaving existing nodes untouched, while the former must be used for
more intrusive changes. In addition, it is possible to tell the kernel that a state is “monotonic”
with respect to AST changes, in the sense that it does not need to be cleared when nodes
are added (the information that should be associated to the new nodes will be computed as
needed). This is done with the function Ast.add_monotonic_state. Ast.mark_as_grown
will not touch such state, while Ast.mark_as_changed will clear it.

4.12.4 Direct Use of Low-level Functor State_builder.Register

Functor State_builder.Register is the only functor which really registers a state. All the
others internally use it. In some cases (e.g. if you define your own mutable record used as a
state), you have to use it. Actually, in the Frama-C kernel, there is only three direct uses of
this functor over thousands state registrations: so you will certainly never use it.

This functor takes three arguments. The first and the third ones respectively correspond to
the datatype and to information (name and dependencies) of the states: they are similar to
the corresponding arguments of the high-level functors (see Section 4.12.3).

The second argument explains how to handle the local version of the state under registration.
Indeed here is the key point: from the outside, only this local version is used for efficiency
purpose (remember Figure 4.4). It would work even if projects do not exist. Each project
knows a global version. The project management system automatically switches the local
version when the current project changes in order to conserve a physical equality between local
version and current global version. So, for this purpose, the second argument provides a type
t (type of values of the state) and five functions create (creation of a new fresh state), clear
(cleaning a state), get (getting a state), set (setting a state) and clear_some_projects (how
to clear each value of type project in the state if any).

74

4.12. PROJECT MANAGEMENT SYSTEM

The following invariants must hold:7

create () returns a fresh value (4.1)
∀p of type t, create () = (clear p; set p; get ()) (4.2)

∀p of type t, copy p returns a fresh value (4.3)
∀p1, p2 of type t such that p1 != p2, (set p1; get ()) != p2 (4.4)

Invariant 4.1 ensures that there is no sharing with any value of a same state: so each new
project has got its own fresh state. Invariant 4.2 ensures that cleaning a state resets it to its
initial value. Invariant 4.3 ensures that there is no sharing with any copy. Invariant 4.4 is a
local independence criteria which ensures that modifying a local version does not affect any
other version (different of the global current one) by side-effect.

Example 4.26 To illustrate this, we show how functor State_builder.Ref (registering a
state corresponding to a reference) is implemented.

module Ref
(Data: Datatype.S)
(Info: sig include Info val default: unit → Data.t end) =

struct
type data = Data.t
let create () = ref Info.default
let state = ref (create ())

Here we use an additional reference: our local version is a reference on the right value. We
can use it in order to safely and easily implement get and set required by the registration.

include Register
(Datatype.Ref(Data))
(struct
type t = data ref (∗ we register a reference on the given type ∗)
let create = create
let clear tbl = tbl ←Info.default
let get () = !state
let set x = state ←x
let clear_some_projects f x =
if Data.mem_project f !x then begin clear x; true end else false

end)
(Info)

For users of this module, we export “standard” operations which hide the local indirection
required by the project management system.

let set v = !state ←v
let get () = !(!state)
let clear () = !state ←Info.default

end

As you can see, the above implementation is error prone; in particular it uses a double indirec-
tion (reference of reference). So be happy that higher-level functors like State_builder.Ref
are provided which hide you such implementations.

7As usual in OCaml, = stands for structural equality while == (resp. !=) stands for physical equality (resp.
disequality).

75

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.12.5 Using Projects

As said before, all operations are done by default on the current project. But sometimes plug-
in developers have to explicitly use another project, for example when the AST is modified
(usually through the use of a copy visitor, see Section 4.16) or replaced (e.g. if a new one is
loaded from disk).

An AST must never be modified inside a project. If such an operation is re-
quired, you must either create a new project with a new AST, usually by using
File.init_project_from_cil_file or File.init_project_from_visitor; or write
the following line of code (see Section 4.12.6):

let selection = State_selection.only_dependencies Ast.self in
Project.clear ~selection ()

Operations over projects are grouped together in module Project. A project has type
Project.t. Function Project.set_current sets the current project on which all opera-
tions are implicitly performed on the new current project.

Example 4.27 Suppose that you saved the current project into file foo.sav in a previous
Frama-C session8 thanks to the following instruction.

Project.save "foo.sav"

In a new Frama-C session, executing the following lines of code (assuming the value analysis
has never been computed previously)

let print_computed () = Format.printf "%b@." (Db.Value.is_computed ()) in
print_computed (); (∗ false ∗)
let old = Project.current () in
try

let foo = Project.load ∼name:"foo" "foo.sav" in
Project.set_current foo;
!Db.Value.compute ();
print_computed (); (∗ true ∗)
Project.set_current old;
print_computed () (∗ false ∗)

with Project.IOError _ →
Kernel.abort "error while loading"

displays
false
true
false

This example shows that the value analysis has been computed only in project foo and not in
project old.

An important invariant of Frama-C is: if p is the current project before running an analysis,
then p will be the current project after running it. It is the responsability of any plug-in
developer to enforce this invariant for its own analysis.

8A session is one execution of Frama-C (through frama-c or frama-c-gui).

76

4.12. PROJECT MANAGEMENT SYSTEM

To be sure to enforce the above-mentioned invariant, the project library provides an alter-
native to the use of Project.set_current: Project.on applies an operation on a given
project without changing the current project (i.e. locally switch the current project in order
to apply the given operation and, after, restore the initial context).

Example 4.28 The following code is equivalent to the one given in Example 4.27.

let print_computed () = Format.printf "%b@." (Db.Value.is_computed ()) in
print_computed (); (∗ false ∗)
try

let foo = Project.load ∼name:"foo" "foo.sav" in
Project.on foo
(fun () → !Db.Value.compute (); print_computed () (∗ true ∗)) ();

print_computed () (∗ false ∗)
with Project.IOError _ →

exit 1

It displays

false
true
false

4.12.6 Selections

Most operations working on a single project (e.g. Project.clear or Project.on) have
an optional parameter selection of type State_selection.t. This parameter allows the
developer to specify on which states the operation applies. A selection is a set of states which
allows the developer to consistently handle state dependencies.

Example 4.29 The following statement clears all the results of the value analysis and all
its dependencies in the current project.

let selection = State_selection.with_dependencies Db.Value.self in
Project.clear ∼ selection ()

The selection explicitly indicates that we also want to clear all the states which depend on the
value analysis’ results.

Use selections carefully: if you apply a function f on a selection s and f handles a state
which does not belong to s, then the computed result by Frama-C is potentially incorrect.

Example 4.30 The following statement applies a function f in the project p (which is not
the current one). For efficiency purpose, we restrict the considered states to the command
line options (see Section 4.13).

Project.on ∼selection:(Parameter_state.get_selection ()) p f ()

This statement only works if f only handles values of the command line options. If it tries
to get the value of another state, the result is unspecified and all actions using any state of
the current project and of project p also become unspecified.

77

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.13 Command Line Options

Prerequisite: knowledge of the OCaml module system.

Values associated with command line options are called parameters. The parameters of the
Frama-C kernel are stored in module Kernel while the plug-in specific ones have to be defined
in the plug-in source code.

4.13.1 Definition

In Frama-C, a parameter is represented by a value of type Typed_parameter.t and by a
module implementing the signature Parameter_sig.S. The first representation is a low-level
one required by emitters (see Section 4.17) and the GUI. The second one provides a high-
level API: each parameter is indeed a state (see Section 4.12.2). Several signatures extending
Parameter_sig.S are provided in order to deal with the usual parameter types. For example,
there are signatures Parameter_sig.Int and Parameter_sig.Bool for integer and boolean
parameters. Mostly, these signatures provide getters and setters for modifying parameter
values.
Implementing such an interface is very easy thanks to a set of functors provided by the output
module of Plugin.Register. Indeed, you have just to choose the right functor according to
your option type and eventually the wished default value. Below are some examples of such
functors (see the signature Parameter_sig.Builder for an exhaustive list).

1. False (resp. True) builds a boolean option initialized to false (resp. true).

2. Int (resp. Zero) builds an integer option initialized to a specified value (resp. to 0).

3. String (resp. Empty_string) builds a string option initialized to a specified value
(resp. to the empty string "").

4. String_set builds an option taking a set of strings in argument (initialized to the
empty set).

5. Kernel_function_set builds an option taking a set of kernel functions in argument
(initialized to the empty set).

Each functor takes as argument (at least) the name of the command line option corresponding
to the parameter and a short description for this option.

Example 4.31 The parameter corresponding to the option -occurrence of the plug-in
occurrence is the module Print (defined in the file src/occurrence/options.ml). It is
implemented as follow.

module Print =
False
(struct

let option_name = "-occurrence"
let help = "print results of occurrence analysis"

end)

So it is a boolean parameter initialized by default to false. The declared interface for this
module is simply

78

4.13. COMMAND LINE OPTIONS

module Print: Parameter_sig.Int

Another example is the parameter corresponding to the option -impact-pragma of the
plug-in impact. This parameter is defined by the module Pragma (defined in the file
src/impact/options.ml). It is implemented as follow.

module Pragma =
String_set
(struct

let option_name = "-impact-pragma"
let arg_name = "f1, ..., fn"
let help = "use the impact pragmas in the code of functions f1,...,fn"

end)

So it is a set of strings initialized by default to the empty set. Frama-C uses the field arg_name
in order to print the name of the argument when displaying help. The field help is the help
message itself. The Interface for this module is simple:

module Pragma: Parameter_sig.String_set

Recommendation 4.3 Parameters of a same plug-in plugin should belong to a module
called Options, Plugin_options, Parameters or Plugin_parameters inside the plug-in di-
rectory.

Using a kernel parameters or a parameter of your own plug-in is very simple: you have simply
to call the function get corresponding to your parameter.

Example 4.32 To know whether Frama-C uses unicode, just write
Kernel.Unicode.get ()

Inside the plug-in From, just write
From_parameters.ForceCallDeps.get ()

in order to know whether callsite-wise dependencies have been required.

Using a parameter of a plug-in p in another plug-in p′ requires the use of module
Dynamic.Parameter: since the module defining the parameter is not visible from the out-
side of its plug-in, you have to use the dynamic API of plug-in p in which p’s parameters
are automatically registered (see Section 4.10.3). The module Dynamic.Parameter defines
sub-modules which provide easy access to parameters according to their OCaml types.

Example 4.33 Outside the plug-in From, just write
Dynamic.Parameter.Bool.get "-calldeps" ()

in order to know whether callsite-wise dependencies have been required.

4.13.2 Tuning

It is possible to modify the default behavior of command line options in several ways by
applying functions just before or just after applying the functor defining the corresponding
parameter.
Functions which can be applied afterwards are defined in the output signature of the applied
functor.

79

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Example 4.34 Here is how the option "-slicing-level" restricts the range of its argument to
the interval [0; 3].

module Calls =
Int
(struct

let option_name = "-slicing-level"
let default = 2
let arg_name = ""
let help = "..." (∗ skipped here ∗)
end)

let () = Calls.set_range ∼min:0 ∼max:3

Functions which can be applied before applying the functor are defined in the module
Parameter_customize.

Example 4.35 Here is how the opposite of option "-safe-arrays" is renamed into "-unsafe-
arrays" (otherwise, by default, it would be "-no-safe-arrays").

let () = Parameter_customize.set_negative_option_name "-unsafe-arrays"
module SafeArrays =
True
(struct

let module_name = "SafeArrays"
let option_name = "-safe-arrays"
let help = "for arrays that are fields inside structs, assume that \

accesses are in bounds"
end)

4.14 Initialization Steps

Prerequisite: knowledge of linking of OCaml files.

In a standard way, Frama-C modules are initialized in the link order which remains mostly
unspecified, so you have to use side-effects at module initialization time carefully.

This section details the different stages of the Frama-C boot process to help advanced plug-in
developers interact more deeply with the kernel process. It can be also useful for debugging
initialization problems.
As a general rule, plug-in routines must never be executed at link time. Any useful code, be
it for registration, configuration or C-code analysis, should be registered as function hooks to
be executed at a proper time during the Frama-C boot process. In general, registering and
executing a hook is tightly coupled with handling the command line parameters.
The parsing of the command line parameters is performed in several phases and stages , each
one dedicated to specific operations. For instance, journal replays should be performed after
loading dynamic plug-ins, and so on. Following the general rule stated at the beginning of
this section, even the kernel services of Frama-C are internally registered as hooks routines
to be executed at a specific stage of the initialization process, among plug-ins ones.
From the plug-in developer point of view, the hooks are registered by calling the
run_after_xxx_stage routines in Cmdline module and extend routine in the Db.Main mod-
ule.

80

4.14. INITIALIZATION STEPS

The initialization phases and stages of Frama-C are described below, in their execution order.

A – The Initialization Stage: this stage initializes Frama-C compilation units, following
some partially specified order. More precisely:

1. the architecture dependencies depicted on Figure 3.1 (cf. p. 33) are respected. In
particular, the kernel services are linked first, then the kernel integrated types for
plug-ins, and finally the plug-ins are linked in unspecified order;

2. when the GUI is present, for any plug-in p, the non-gui modules of p are always linked
before the gui modules of p;

3. finally, the module Boot is linked at the very end of this stage.

Plug-in developers can not customize this stage. In particular, the module Cmdline (one
of the first linked modules, see Figure 3.1) performs a very early configuration stage,
such as checking if journalization has to be activated (cf. Section 4.11), or setting the
global verbosity and debugging levels.

B – The Early Stage: this stage initializes the kernel services. More precisely:

(a) first, the journal name is set to its right value (according to the option
-journal-name) and the default project is created;

(b) then, the parsing of command line options registered for the Cmdline.Early stage;
(c) finally, all functions registered through Cmdline.run_after_early_stage are exe-

cuted in an unspecified order.

C – The Extending Stage: the searching and loading of dynamically linked plug-ins, of
journal, scripts and modules is performed at this stage. More precisely:

(a) the command line options registered for the Cmdline.Extending stage are treated,
such as -load-script and -add-path;

(b) the hooks registered through Cmdline.run_during_extending_stage are executed.
Such hooks include kernel function calls for searching, loading and linking the various
plug-ins, journal and scripts compilation units, with respect to the command line
options parsed during stages B and C.

D – The Running Phase: the command line is split into several groups of command line
arguments, each of them separated by an option -then or an option -then-on p (thus
if there is n occurrences of -then or -then-on p, then there are n+1 groups). For each
group, the following stages are executed in sequence: all the stages are executed on the
first group provided on the command line, then they are executed on the second group,
and so on.

1. The Extended Stage: this step is reserved for commands which require that all
plug-ins are loaded but which must be executed very early. More precisely:

(a) the command line options registered for the Cmdline.Extended stage are treated,
such as -verbose-* and -debug-*;

(b) the hooks registered through Cmdline.run_after_extended_stage. Most of
these registered hooks come from postponed internal-state dependencies (see Sec-
tion 4.12.3).

81

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Remark that both statically and dynamically linked plug-ins have been loaded at this
stage. Verbosity and debug level for each plug-in are determined during this stage.

2. The Exiting Stage: this step is reserved for commands that makes Frama-C exit
before starting any analysis at all, such as printing help informations:
(a) the command line options registered for the Cmdline.Exiting stage are treated;
(b) the hooks registered through Cmdline.run_after_exiting_stage are exe-

cuted in an unspecified order. All these functions should do nothing (using
Cmdline.nop) or raise Cmdline.Exit for stopping Frama-C quickly.

3. The Loading Stage: this is where the initial state of Frama-C can be replaced by
another one. Typically, it would be loaded from disk through the -load option or
computed by running a journal (see Section 4.11). As like as for the other stages:
(a) first, the command line options registered for the Cmdline.Loading stage are

treated;
(b) then, the hooks registered through Cmdline.run_after_loading_stage are ex-

ecuted in an unspecified order. These functions actually change the initial state
of Frama-C with the specified one. The Frama-C kernel verifies as far as possible
that only one new-initial state has been specified.

Normally, plug-ins should never register hooks for this stage unless they actually set
a different initial states than the default one. In such a case:
They must call the function Cmdline.is_going_to_load while initializing.

4. The Configuring Stage: this is the usual place for plug-ins to perform special
initialization routines if necessary, before having their main entry points executed.
As for previous stages:
(a) first, the command line options registered for the Cmdline.Configuring stage

are treated. Command line parameters that do not begin by an hyphen (character
’-’) are not options and are treated as C files. Thus they are added to the list
of files to be preprocessed or parsed for building the AST (on demand);

(b) then, the hooks registered through Cmdline.run_after_configuring_stage are
executed in an unspecified order.

5. The Setting Files Stage: this stage sets the C files to analyze according to those
indicated on the command line. More precisely:
(a) first, each argument of the command line which does not begin by an hyphen

(character ’-’) is registered for later analysis;
(b) then, the hooks registered through Cmdline.run_after_setting_files are ex-

ecuted in an unspecified order.
6. The Main Stage: this is the step where plug-ins actually run their main entry

points registered through Db.Main.extend. For all intents and purposes, you should
consider that this stage is the one where these hooks are executed.

4.15 Customizing the AST creation

Prerequisite: None

Plug-ins may modify the way source files are transformed into the AST over which the
analyses are performed. Customization of the front-end of Frama-C can be done at several
stages.

82

4.16. VISITORS

A – Parsing: this stage takes care of converting an individual source file into a parsed AST
(a.k.a Cabs, which differs from the type-checked AST on which most analyses operate).
By default, source files are treated as C files, possibly needing a pre-processing phase.
It is possible to tell Frama-C to use another parser for files ending with a given suffix
by registering this parser with the File.new_file_type function. Suffixes .h, .i and
.c are reserved for Frama-C kernel. The registered parser is supposed to return a pair
consisting of a type-checked AST (Cil_types.file) and a parsed AST (Cabs.file).
The former can be obtained from the latter with the Cabs2cil.convFile function,
which guarantees that the resulting Cil_types.file respects all invariants expected by
the Frama-C kernel.

B – Type-checking: a normal Cabs.file (i.e. not obtained through a custom parsing
function) can be transformed before being type-checked. Transformation hooks are
registered through Frontc.add_syntactic_transformation.

C – After linking: Once all source files have been processed, they are all linked together
in a single AST. Transformations can be performed on the resulting AST at two stages:

1. before clean-up (i.e. removal of useless temporary variables and prototypes that are
never called). At that stage, global tables indexing information related to the AST
(see figure 5.4) have not yet been filled.

2. after clean-up. At this stage, index tables are filled, and can thus be used. On the
other hand, the transformation must take care itself of keeping in sync the AST and
the tables

Registering a transformation for this stage is done through the func-
tion File.add_code_transformation_before_cleanup (respectively
File.add_code_transformation_after_cleanup). If such a transformation modify
the control-flow graph of a function f, in particular by adding statements, it must call
File.must_recompute_cfg, in order to have the graph recomputed afterwards.

4.16 Visitors

Prerequisite: knowledge of OCaml object programming.

Cil offers a visitor, Cil.cilVisitor that allows to traverse (parts of) an AST. It is a class
with one method per type of the AST, whose default behavior is simply to call the method
corresponding to its children. This is a convenient way to perform local transformations
over a whole Cil_types.file by inheriting from it and redefining a few methods. However,
the original Cil visitor is of course not aware of the internal state of Frama-C itself. Hence,
there exists another visitor, Visitor.generic_frama_c_visitor, which handles projects in
a transparent way for the user. There are very few cases where the plain Cil visitor should
be used.

Basically, as soon as the initial project has been built from the C source files (i.e. one of
the functions File.init_∗ has been applied), only the Frama-C visitor should occur.

There are a few differences between the two (the Frama-C visitor inherits from the Cil one).
These differences are summarized in Section 4.16.6, which the reader already familiar with
Cil is invited to read carefully.

83

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.16.1 Entry Points

Cil offers various entry points for the visitor. They are functions called Cil.visitCilAstType
where astType is a node type in the Cil’s AST. Such a function takes as argument an instance
of a cilVisitor and an astType and gives back an astType transformed according to the
visitor. The entry points for visiting a whole Cil_types.file (Cil.visitCilFileCopy,
Cil.visitCilFile and visitCilFileSameGlobals) are slightly different and do not support
all kinds of visitors. See the documentation attached to them in cil.mli for more details.

4.16.2 Methods

As said above, there is a method for each type in the Cil AST (including for
logic annotation). For a given type astType, the method is called vastType9, and
has type astType→astType’ visitAction, where astType’ is either astType or ast-
Type list (for instance, one can transform a global into several ones). visitAction
describes what should be done for the children of the resulting AST node, and
is presented in the next section. In addition, some types have two modes of
visit: one for the declaration and one for use. This is the case for varinfo
(vvdec and vvrbl), logic_var (vlogic_var_decl and vlogic_var_use) logic_info
(vlogic_info_decl and vlogic_info_use), logic_type_info (vlogic_type_info_decl
and vlogic_type_info_use), and logic_ctor_info (vlogic_ctor_info_decl and
vlogic_ctor_info_use). More detailed information can be found in cil.mli.

For the Frama-C visitor, two methods, vstmt and vglob take care of maintaining the
coherence between the transformed AST and the internal state of Frama-C . Thus they
must not be redefined. One should redefine vstmt_aux and vglob_aux instead.

4.16.3 Action Performed

The return value of visiting methods indicates what should be done next. There are six
possibilities:

• SkipChildren the visitor does not visit the children;

• ChangeTo v the old node is replaced by v and the visit stops;

• DoChildren the visit goes on with the children; this is the default behavior;

• JustCopy is only meaningful for the copy visitor. Indicates that the visit should go on
with the children, but only perform a fresh copy of the nodes

• ChangeToPost(v,f) the old node is replaced by v, and f is applied to the result. This is
however not exactly the same thing as returning ChangeTo(f(v)). Namely, in the case
of vglob_aux, f will be applied to v only after the operations needed to maintain the
consistency of Frama-C’s internal state with respect to the AST have been performed.
Thus, ChangeToPost should be used with extreme caution, as f could break some
invariants of the kernel.

• DoChildrenPost f visit the children and apply the given function to the result.
9This naming convention is not strictly enforced. For instance the method corresponding to offset is

voffs.

84

4.16. VISITORS

• JustCopyPost(f) is only meaningful for the copy visitor. Performs a fresh copy of the
nodes and all its children and applies f to the copy.

• ChangeDoChildrenPost(v,f) the old node is replaced by v, the visit goes on with the
children of v, and when it is finished, f is applied to the result. In the case of vstmt_aux,
f is called after the annotations in the annotations table have been visited, but before
they are attached to the new statement, that is, they will be added to the result of
f. Similarly, vglob_aux will consider the result of f when filling the table of globals.
Note that ChangeDoChildrenPost(x,f) where x is the current node is not equivalent
to DoChildrenPost f, as in the latter case, the visitor mechanism knows that it still
deals with the original node.

4.16.4 Visitors and Projects

Copy visitors (see next section) implicitly take an additional argument, which is the project
in which the transformed AST should be put in.
Note that the tables of the new project are not filled immediately. Instead, actions are
queued, and performed when a whole Cil_types.file has been visited. One can access the
queue with the get_filling_actions method, and perform the associated actions on the
new project with the fill_global_tables method.
In-place visitors always operate on the current project (otherwise, two projects would risk
sharing the same AST).

4.16.5 In-place and Copy Visitors

The visitors take as argument a visitor_behavior, which comes in two flavors:
inplace_visit and copy_visit. In the in-place mode, nodes are visited in place, while
in the copy mode, nodes are copied and the visit is done on the copy. For the nodes shared
across the AST (varinfo, compinfo, enuminfo, typeinfo, stmt, logic_var, logic_info
and fieldinfo), sharing is of course preserved, and the mapping between the old nodes and
their copy can be manipulated explicitly through the following functions:

• reset_behavior_name resets the mapping corresponding to the type name.

• get_original_name gets the original value corresponding to a copy (and behaves as
the identity if the given value is not known).

• get_name gets the copy corresponding to an old value. If the given value is not known,
it behaves as the identity.

• set_name sets a copy for a given value. Be sure to use it before any occurrence of the
old value has been copied, or sharing will be lost.

get_original_name functions allow to retrieve additional information tied to the original
AST nodes. Its result must not be modified in place (this would defeat the purpose of
operating on a copy to leave the original AST untouched). Moreover, note that whenever
the index used for name is modified in the copy, the internal state of the visitor behavior
must be updated accordingly (via the set_name function) for get_original_name to
give correct results.

85

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Type Index
varinfo vid
compinfo ckey
enuminfo ename
typeinfo tname
stmt sid
logic_info l_var_info.lv_id
logic_var lv_id
fieldinfo fname and fcomp.ckey

Figure 4.5: Indices of AST nodes.

The list of such indices is given Figure 4.5.

Last, when using a copy visitor, the actions (see previous section) SkipChildren and
ChangeTo must be used with care, i.e. one has to ensure that the children are fresh.
Otherwise, the new AST will share some nodes with the old one. Even worse, in such
a situation the new AST might very well be left in an inconsistent state, with uses of
shared node (e.g. a varinfo for a function f in a function call) which do not match the
corresponding declaration (e.g the GFun definition of f).
When in doubt, a safe solution is to use JustCopy instead of SkipChildren and
ChangeDoChildrenPost(x,fun x -> x) instead of ChangeTo(x).

4.16.6 Differences Between the Cil and Frama-C Visitors

As said in Section 4.16.2, vstmt and vglob should not be redefined. Use vstmt_aux and
vglob_aux instead. Be aware that the entries corresponding to statements and globals in
Frama-C tables are considered more or less as children of the node. In particular, if the
method returns ChangeTo action (see Section 4.16.3), it is assumed that it has taken care
of updating the tables accordingly, which can be a little tricky when copying a file from a
project to another one. Prefer ChangeDoChildrenPost. On the other hand, a SkipChildren
action implies that the visit will stop, but the information associated to the old value will be
associated to the new one. If the children are to be visited, it is undefined whether the table
entries are visited before or after the children in the AST.

4.16.7 Example

Here is a small copy visitor that adds an assertion for each division in the program, stating
that the divisor is not zero:

open Cil_types
open Cil

module M = Plugin.Register

(∗ Each annotation in Frama−C has an emitter, for traceability.
We create thus our own, and says that it will only be used to emit code
annotations, and that these annotations do not depend on Frama−C's command
line parameters.

86

4.16. VISITORS

∗)
let syntax_alarm =
Emitter.create
"Syntactic check" [Emitter.Code_annot] ∼correctness:[] ∼tuning:[]

class non_zero_divisor prj = object (self)
inherit Visitor.generic_frama_c_visitor (Cil.copy_visit prj)

(∗ A division is an expression: we override the vexpr method ∗)
method vexpr e = match e.enode with
| BinOp((Div|Mod), _, denom, _) →

let logic_denom = Logic_utils.expr_to_term ∼cast:true denom in
let assertion = Logic_const.prel (Rneq, logic_denom, Cil.lzero ()) in
(∗ At this point, we have built the assertion we want to insert. It remains

to attach it to the correct statement. The cil visitor maintains the
information of which statement and function are currently visited in
the [current_stmt] and [current_kf] methods, which return None when
outside of a statement or a function , e.g. when visiting a global
declaration. Here, it necessarily returns [Some]. ∗)

let stmt = match self#current_kinstr with
| Kglobal → assert false
| Kstmt s → s

in
let kf = Extlib.the self #current_kf in
(∗ The above statement and function are related to the original project. We

need to attach the new assertion to the corresponding statement and
function of the new project. Cil provides functions to convert a
statement (function) of the original project to the corresponding
one of the new project. ∗)

let new_stmt = get_stmt self#behavior stmt in
let new_kf = get_kernel_function self#behavior kf in
(∗ Since we are copying the file in a new project, we cannot insert

the annotation into the current table, but in the table of the new
project. To avoid the cost of switching projects back and forth,
all operations on the new project are queued until the end of the
visit , as mentioned above. This is done in the following statement. ∗)

Queue.add
(fun () →

Annotations.add_assert syntax_alarm ∼kf:new_kf new_stmt assertion)
self # get_filling_actions ;

DoChildren
| _ → DoChildren

end

(∗ This function creates a new project initialized with the current file plus
the annotations related to division. ∗)

let create_syntactic_check_project () =
ignore
(File.create_project_from_visitor "syntactic check" (new non_zero_divisor))

let () = Db.Main.extend create_syntactic_check_project

4.17 Logical Annotations

87

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Prerequisite: Nothing special (apart of core OCaml programming).

Logical annotations set by the users in the analyzed C program are part of the AST. However
others annotations (those generated by plug-ins) are not directly in the AST because it would
contradict the rule “an AST must never be modified inside a project” (see Section 4.12.5).
So all the logical annotations (including those set by the users) are put in global projectified
tables maintained up-to-date by the Frama-C kernel. Anytime a plug-in wants either to access
to or to add/delete an annotation, itmust use the corresponding modules or functions and not
the annotations directly stored in the AST. These modules and functions are the following.

• Module Annotations which contains the database of annotations related to the AST
(global annotations, function constracts and code annotations). Adding or deleting an
annotation requires to define an emitter by Emitter.create first.

• Module Property_status should be used to get or to modify the validity status
of logical properties. Modifying a property status requires to define an emitter by
Emitter.create first. Key concepts and theoretical foundation of this module are
described in an associated research paper [6].

• Module Property provides access to all logical properties on which property statuses
can be emitted. In particular, an ACSL annotation has to be converted into a property
if you want to access its property statuses.

• Modules Logic_const, Logic_utils and Db.Properties contain several operations
over annotations.

4.18 Extending ACSL annotations

Frama-C supports the possibility of adding specific ACSL annotations in the form of special
clauses of a function specification: such annotations are stored in the b_extended field of
Cil_types.behavior Such annotations must be introduced by a keyword kw that will be
used to identify them in the AST. An element of the b_extended list of the form (kw, id,
preds) is composed of

• the keyword kw that identifies the extension to which it belongs.

• an identifier id that the plugin can use to refer to the annotation in its internal state.
This identifier is under the full responsibility of the plugin and will never be used by
the kernel.

• a possibly empty list of predicates preds conveying some information. This list will be
traversed normally by the visitor (see section 4.16).

If all the information needed by the extension can be expressed in preds, id is useless and
can be ignored by the plugin.
In order for the extension to be recognized by the parser, it must be regis-
tered by the Logic_typing.register_behavior_extension function. After a call to
Logic_typing.register_behavior_extension kw f, a clause of the form kw e1,...,en;,
where each ei can be any syntactically valid ACSL term or predicate, will be treated by the
parser as belonging to the extension kw. During type-checking, the list [e1;...;en] will be

88

4.19. LOCATIONS

given to f, together with the current typing environment and the current behavior. f can
modify such behavior in place, in particular its b_extended field. f might also fill the plugin’s
internal tables and generate appropriate id for the extended clause as mentioned above.

If all the information of the extended clause is contained in the predicate list preds, no
other registration is needed beyond the parsing and type-checking: the pretty-printer will
output preds as a comma-separated list preceded by kw, and the visitor will traverse each
preds as well as any predicate present in the AST. However, if some information is present
in the internal state of the plugin, two more functions may be required for pretty-printing
and visiting the extending clause respectively.

First, Cil_printer.register_behavior_extension registers a new pretty-printer pp for a
given extension kw. Together with the id and the preds of the extended clause, pp is given
the current pretty-printer and the formatter where to output the result.

Second, Cil.register_behavior_extension registers a custom visitor vext for a given ex-
tension kw. vext is given the content of the extended clause and the current visitor, and
must return a Cil.visitAction (if all the information is in the plugin’s own table, it can
return DoChildren).

4.19 Locations

Prerequisite: Nothing special (apart of core OCaml programming).

In Frama-C, different representations of C locations exist. Section 4.19.1 presents them.
Moreover, maps indexed by locations are also provided. Section 4.19.2 introduces them.

4.19.1 Representations

There are four different representations of C locations. Actually only three are really relevant.
All of them are defined in module Locations. They are introduced below. See the docu-
mentation of src/memory_state/locations.mli for details about the provided operations
on these types.

• Type Location_Bytes.t is used to represent values of C expressions like 2 or ((int)
&a) + 13. With this representation, there is no way to know the size of a value while
it is still possible to join two values. Roughly speaking it is represented by a mapping
between C variables and offsets in bytes.

• Type location, equivalently Location.t is used to represent the right part of a C
affectation (including bitfields). It is represented by a Location_Bits.t (see below)
attached to a size. It is possible to join two locations if and only if they have the same
sizes.

• Type Location_Bits.t is similar to Location_Bytes.t with offsets in bits instead of
bytes. Actually it should only be used inside a location.

• Type Zone.t is a set of bits (without any specific order). It is possible to join two zones
even if they have different sizes.

89

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Recommendation 4.4 Roughly speaking, locations and zones have the same purpose. You
should use locations as soon as you have no need to join locations of different sizes. If you
require to convert locations to zones, use the function Locations.enumerate_valid_bits.

As join operators are provided for these types, they can be easily used in abstract interpre-
tation analyses (which can themselves be implemented thanks to one of functors of module
Dataflow2, see Section 5.1.1).

4.19.2 Map Indexed by Locations

Modules Lmap and Lmap_bitwise provide functors implementing maps indexed by locations
and zones (respectively). The argument of these functors have to implement values attached
to indices (resp. locations or zones).
These implementations are quite more complex than simple maps because they automatically
handle overlaps of locations (or zones). So such implementations actually require that the
structures implementing the values attached to indices are at least semi-lattices; see the
corresponding signatures in module Lattice_type. For this purpose, functors of the abstract
interpretation toolbox can help (see in particular module Abstract_interp).

4.20 GUI Extension

Prerequisite: knowledge of Lablgtk2.

Each plug-in can extend the Frama-C graphical user interface (aka GUI) in order to
support its own functionalities in the Frama-C viewer. For this purpose, a plug-in
developer has to register a function of type Design.main_window_extension_points
→ unit thanks to Design.register_extension. The input value of type
Design.main_window_extension_points is an object corresponding to the main win-
dow of the Frama-C GUI. It provides accesses to the main widgets of the Frama-C
GUI and to several plug-in extension points. The documentation of the class type
Design.main_window_extension_points is accessible through the source documentation
(see Section 4.21).
The GUI plug-in code has to be put in separate files into the plug-in directory. Furthermore,
in the Makefile, the variable PLUGIN_GUI_CMO has to be set in order to compile the GUI
plug-in code (see Section 5.3.3).
Besides time-consuming computations have to call the function !Db.progress from time to
time in order to keep the GUI reactive.
The GUI implementation uses Lablgtk2 [12]: you can use any Lablgtk2-compatible code in
your gui extension. A complete example of a GUI extension may be found in the plug-in
Occurrence (see file src/occurrence/register_gui.ml).

Potential issues All the GUI plug-in extensions share the same window and same
widgets. So conflicts can occur, especially if you specify some attributes on a predefined
object. For example, if a plug-in wants to highlight a statement s in yellow and another
one wants to highlight s in red at the same time, the behavior is not specified but it could
be quite difficult to understand for an user.

90

4.21. DOCUMENTATION

4.21 Documentation

Prerequisite: knowledge of ocamldoc.

Here we present some hints on the way to document your plug-in. First Section 4.21.1
introduces a quick general overview about the documentation process. Next Section 4.21.2
focuses on the plug-in source documentation. Finally Section 4.21.3 explains how to modify
the Frama-C website.

4.21.1 General Overview

Command make doc produces the whole Frama-C source documentation in HTML format.
The generated index file is doc/code/html/index.html. A more general purpose index is
doc/index.html (from which the previous index is accessible).
The previous command takes times. So command make doc-kernel only generates the
kernel documentation (i.e. Frama-C without any plug-in) while make $(PLUGIN_NAME)_DOC
(by substituting the right value for $(PLUGIN_NAME)) generates the documentation for a single
plug-in.

4.21.2 Source Documentation

Each plug-in should be properly documented. Frama-C uses ocamldoc and so you can write
any valid ocamldoc comments.

ocamldoc tags for Frama-C The tag @since version should document any element intro-
duced after the very first release, in order to easily know the required version of the Frama-C
kernel or specific plug-ins. In the same way, the Frama-C documentation generator provides a
custom tag @modify version description which should be used to document any element
which semantics have changed since its introduction.
Furthemore, the special tag @plugin developer guide must be attached to each function
used in this document.

Plug-in API A plug-in should export functions in its plug-in interface or through modules
Db or Dynamic as explained in Section 4.10.

The interface name of a plug-in plugin must be Plugin.mli. Be careful to capitalization
of the filename which is unusual in OCaml but required here for compilation purposes. If
you declare such an interface, you also have to set the variable PLUGIN_HAS_MLI in your
Makefile (see Section 5.3.3).

Internal Documentation for Kernel Integrated Plug-ins The Frama-C documen-
tation generator also produces an internal plug-in documentation which may be use-
ful for the plug-in developer itself. This internal documentation is available via file
doc/code/plugin/index.html for each plug-in plugin. You can add an introduction to this
documentation into a file. This file has to be assigned into variable PLUGIN_INTRO of the
Makefile (see Section 5.3.3).

91

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

In order to ease access to this internal documentation, you have to manually edit the file
doc/index.html in order to add an entry for your plug-in in the plug-in list.

Internal Documentation for External Plug-ins External plug-ins can be documented
in the same way as plug-ins that are compiled together with Frama-C. However, in order
to be able to compile the documentation with make doc, you must have generated the
documentation of Frama-C’s kernel (make doc, see above) and installed it with the make
install-doc-code command.

4.21.3 Website

Target readers: CEA developers with a SVN access.

Read private files README and metadoc.NE_PAS_LIVRER in the SVN directory doc/www/src.

4.22 License Policy

Target readers: developers with a SVN access.

Prerequisite: knowledge of make.

If you want to redistribute a plug-in inside Frama-C, you have to define a proper license
policy. For this purpose, some help is provide in the Makefile. Mainly we distinguish two
cases described below.

• If the wished license is already used inside Frama-C, just extend the variable
corresponding to the wished license in order to include files of your plug-in. Next run
make headers.

Example 4.36 Plug-in slicing is released under LGPL and is proprietary of both
CEA and INRIA. So, in the makefile, there is the following line.

CEA_INRIA_LGPL= ... \
src/slicing_types/*.ml* src/slicing/*.ml*

• If the wished license is unknown inside Frama-C, you have to:

1. Add a new variable v corresponding to it and assign files of your plug-in;
2. Extend variable LICENSES with this variable;
3. Add a text file in directory licenses containing your licenses
4. Add a text file in directory headers containing the headers to add into files of

your plug-in (those assigned by v).

The filename must be the same than the variable name v. Moreover this file
should contain a reference to the file containing the whole license text.

5. Run make headers.

92

Chapter 5

Reference Manual

Target readers: Developers which need to understand some Frama-C internal details.

This chapter is a reference manual for Frama-C developers. It provides details completing
Chapter 4.

5.1 File Tree

This Section introduces the main parts of Frama-C in order to quickly find useful information
inside sources. Our goal is not to introduce the Frama-C software architecture (that is the
purpose of Chapter 3) nor to detail each module (that is the purpose of the source documen-
tation generated by make doc). The directory containing the Cil implementation is detailed
in Section 5.1.1 while the directory containing the Frama-C implementation itself is presented
in Section 5.1.2.
Figure 5.1 shows all directories useful to plug-in developers. More details are provided below.

Kind Name Specification Reference
. Frama-C root directory

Sources

src Frama-C implementation Section 5.1.2
cil Cil source files Section 5.1.1

ocamlgraph OcamlGraph source files
external Source of external free libraries

Tests tests Frama-C test suites Section 4.6
ptests ptests implementation

Generated Files bin Binaries
lib Some compiled files

Documentations

doc Documentation directory
headers Headers of source files Section 4.22
licenses Licenses used by plug-ins and kernel Section 4.22

man Man pages
Shared libraries share Shared files

Figure 5.1: Frama-C directories.

93

CHAPTER 5. REFERENCE MANUAL

• The Frama-C root directory contains the configuration files, the main Makefile and
some information files (in uppercase).

• Frama-C sources are split in four directories: src (described in Section 5.1.2) contains
the core of the implementation while cil (described in Section 5.1.1), ocamlgraph and
external respectively contains the implementation of Cil (extended with ACSL), a
version of the OcamlGraph library [3] compatible within Frama-C, and external libraries
included in the Frama-C distribution.

• The directory tests contains the Frama-C test suite which is used by the ptests tool
(see Section 4.6).

• Directories bin and lib contain binary files mainly produced by Frama-C compilation.
Frama-C executables belong to the directory bin, the directories lib/plugins and
lib/gui receive the compiled plug-ins, and the directory lib/fc receives the compiled
kernel interface. You should never add yourself any file in these directories.

• Documentation (including plug-in specific, source code and ACSL documentations) is
provided in directory doc. Directories headers and licenses contains files useful for
copyright notification (see Section 4.22).

• Directory share contains useful libraries for Frama-C users such as the Frama-C C library
(e.g. ad-hoc libraries such as libc and malloc for Frama-C), as well as user-oriented
Makefiles.

5.1.1 The cil directory

The source files of Cil belong to the five directories shown in Figure 5.2. More details are
provided below.

Name Specification
src Main Cil files

src/ext Syntactic analysis provided by Cil
src/frontc C frontend
src/logic ACSL frontend

Figure 5.2: Cil directories.

• src contains the main files of Cil. The most important modules are Cil_types and Cil.
The first one contains type declarations of the Cil AST while the second one contains
useful operations over this AST.

• src/ext contains syntactic analysis provided by Cil . For example, module Cfg pro-
vides control flow graph, module Callgraph provides a syntactic callgraph and module
Dataflow2 provides parameterized forward/backward data flow analysis.

• src/frontc is the C frontend which converts C code to the corresponding Cil AST. It
should not be used by a Frama-C plug-in developer.

94

5.1. FILE TREE

• src/logic is the ACSL frontend which converts logic code to the corresponding Cil
AST. The only useful modules for a Frama-C plug-in developer are Logic_const which
provides some predefined logic constructs (terms, predicates, . . .) and Logic_typing
which allows to dynamically extend the logic type system.

5.1.2 The src directory

The source files of Frama-C are split into different sub-directories inside src. Each sub-
directory contains either a plug-in implementation or some specific parts of the Frama-C
kernel.
Each plug-in implementation can be split into two different sub-directories, one for ex-
ported type declarations and related implementations visible from Db (see Chapter 3 and
Section 4.10.2) and another for the implementation provided in Db.
Kernel directories are shown Figure 5.3. More details are provided below.

Kind Name Specification Reference

Toolboxes

kernel Kernel toolbox
logic Logic toolbox
ai Abstract interpretation toolbox Section 4.19

memory_states Memory-state toolbox Section 4.19

Libraries

type Type library Section 4.9
project Project library Section 4.12
printer AST printer library

lib Miscellaneous libraries
misc Additional useful operations

Entry points gui Graphical User Interface Section 4.20

Figure 5.3: Kernel directories.

• Directory kernel contains the kernel toolbox over Cil. Main kernel modules are shown
in Figure 5.4.

• Directory logic is the logic toolbox. It contains modules helping to handle logical
annotations and their status.

• Directories ai and memory_states are the abstract interpretation and memory-state
toolboxes (see section 4.19). In particular, in ai, module Abstract_interp defines
useful generic lattices and module Ival defines some pre-instantiated arithmetic lat-
tices while, in memory_states, module Locations provides several representations of C
locations and modules Lmap and Lmap_bitwise provide maps indexed by such locations.

• Directories type and project contain the type library and the project library respec-
tively described in details in Sections 4.9 and 4.12, while directory printer contain the
modules defining the printer of the AST.

• Directories lib and misc contain datastructures and operations used in Frama-C. In
particular, module Extlib is the Frama-C extension of the OCaml standard library
whereas module Type is the interface for type values (the OCaml values representing
OCaml types) required by dynamic plug-in registrations and uses and journalization
(see Section 4.9).

95

CHAPTER 5. REFERENCE MANUAL

Kind Name Specification Reference

AST Ast The Cil AST for Frama-C
Ast_info Operations over the Cil AST

Global
tables

File AST creation and access to C
files

Globals Operations on globals
Kernel_function Operations on functions

Emitter Emitter of property statuses Section 4.17
Loop Operations on loops

Logic
Annotations Operations on ACSL annota-

tions
Section 4.17

Property Logical properties Section 4.17
Property_status Status of properties Section 4.17

Plug-in
APIs

Db Static plug-in database Section 4.10.2
Dynamic Interface for dynamic plug-ins Section 4.10.3

Command
Line

Options

Parameter_sig Signatures of command line
options

Section 4.13

Parameter_customize Customize behavior of com-
mand line options

Section 4.13

Typed_parameter Parameter as command line
options

Section 4.13

Cmdline Command line parsing Section 4.13

Base
Modules

Config Information about Frama-C
version

Plugin General services for plug-ins Section 4.7
Kernel Kernel as a plug-in Section 4.13
Log Printing messages Section 4.8

Journal Journalization Section 4.11
CilE Useful Cil extensions
Alarms Alarm management

Stmts_graph Accessibility checks using
CFG

Floating_point Floating-point operations
Visitor Visitor Frama-C visitors (subsume Cil

ones)
Section 4.16

Printer Printer_api Signature of AST printers
Printer AST printer

System Command System operations
Task Higher-level API than

Command

Initializer
Boot Last linked module Section 4.14

Gui_init Very early initialization of the
GUI

Section 4.14

Special_hooks Registration of some kernel
hooks

Figure 5.4: Main kernel modules.

96

5.2. CONFIGURE.IN

• Directory gui1 contains the gui implementation part common to all plug-ins. See
Section 4.20 for more details.

5.2 Configure.in

Figure 5.5 presents the different parts of configure.in in the order that they are introduced
in the file. The second column of the tabular says whether the given part has to be modified
eventually by a kernel-integrated plug-in developer. More details are provided below.

Id Name Mod. Reference
1 Configuration of make no
2 Configuration of OCaml no
3 Configuration of mandatory tools/libraries no
4 Configuration of non-mandatory tools/libraries no
5 Platform configuration no
6 Wished Frama-C plug-in yes Sections 4.2.2 and 4.2.4
7 Configuration of plug-in tools/libraries yes Section 4.2.3
8 Checking plug-in dependencies yes Section 4.2.5
9 Makefile creation yes Section 4.2.2
10 Summary yes Section 4.2.2

Figure 5.5: Sections of configure.in.

1. Configuration of make checks whether the version of make is correct. Some useful
option is –enable-verbosemake (resp. –disable-verbosemake) which set (resp. un-
set) the verbose mode for make. In verbose mode, full make commands are displayed
on the user console: it is useful for debugging the makefile. In non-verbose mode, only
command shortcuts are displayed for user readability.

2. Configuration of OCaml checks whether the version of OCaml is correct.

3. Configuration of other mandatory tools/libraries checks whether all the external
mandatory tools and libraries required by the Frama-C kernel are present.

4. Configuration of other non-mandatory tools/libraries checks which external
non-mandatory tools and libraries used by the Frama-C kernel are present.

5. Platform Configuration sets the necessary platform characteristics (operating sys-
tem, specific features of gcc, etc) for compiling Frama-C.

6. Wished Frama-C Plug-ins sets which Frama-C plug-ins the user wants to compile.

7. Configuration of plug-in tools/libraries checks the availability of external tools
and libraries required by plug-ins for compilation and execution.

8. Checking Plug-in Dependencies sets which plug-ins have to be disabled (at least
partially) because they depend on others plug-ins which are not available (at least
partially).

1From the outside, the GUI may be seen as a plug-in with some exceptions.

97

CHAPTER 5. REFERENCE MANUAL

9. Makefile Creation creates Makefile from Makefile including information provided
by this configuration.

10. Summary displays summary of each plug-in availability.

5.3 Makefiles

In this section, we detail the organization of the different Makefiles existing in Frama-C. First
Section 5.3.1 presents a general overview. Next Section 5.3.2 details the different sections
of Makefile.config.in, Makefile.common, Makefile.generic and Makefile. Next Sec-
tion 5.3.3 introduces the variables customizing Makefile.plugin and Makefile.dynamic.
Finally Section 5.3.4 shows specific details of Makefile.dynamic.

5.3.1 Overview

Frama-C uses different Makefiles (plus the plug-in specific ones). They are:

• Makefile: the general Makefile of Frama-C;

• Makefile.generating: it contains the complex rules that generate files. It is not
directly in the general Makefile in order to reduce the dependencies of these rules to
Makefile.generating;

• Makefile.config.in: the Makefile configuring some general variables (especially the
ones coming from configure);

• Makefile.common: the Makefile providing some other general variables;

• Makefile.generic: the Makefile providing generic rules for compiling source files

• Makefile.plugin: the Makefile introducing specific stuff for plug-in compilation;

• Makefile.dynamic: the Makefile usable by plug-in specific Makefiles.

• Makefile.dynamic_config: this Makefile is automatically generated either from
Makefile.dynamic_config.internal or Makefile.dynamic_config.external. It
sets variables which automatically configure Makefile.dynamic.

• Makefile.kernel is automatically generated from Makefile. It contains several vari-
ables useful for linking a plug-in against the Frama-C kernel.

The first one is part of the root directory of the Frama-C distribution while the other ones
are are part of directory share. Each Makefile either includes or is included into at least
another one. Figure 5.6 shows these relationship. Makefile and Makefile.dynamic are
independent: the first one is used to compile the Frama-C kernel while the second one is used
to compile the Frama-C plug-ins. Their common variables are defined in Makefile.common
(which includes Makefile.config.in). They also include Makefile.generic, that defines
default compilation rules for various kinds of source files. Makefile.plugin defines generic
rules and variables for compiling plug-ins. It is used both by Makefile for kernel-specific
plug-ins integrated compiled from the Frama-C Makefile and by Makefile.dynamic for plug-
ins with their own Makefiles.

98

5.3. MAKEFILES

efile.config.inMak ternalconfig.inefile.dynamicMak config.externalefile.dynamicMak

efile.commonMak

efile.genericMak

ernelefile.kMak

configefile.dynamicMak

efile.generatingMak efileMak ... efile.pluginMak efile.dynamicMak

1plug-inforefileMakecificsp ... nplug-inforefileMakecificsp

Caption:

1m 2m 2mefileMaktoinincludedis1mefileMak
1m 2m 1mefileMakfromgeneratedis2mefileMak

xesoborange efilesMakPlug-in

xesobred efilesMakGenerated
xesobgreen efilesMakernelkOther

Figure 5.6: Relationship between the Makefiles

99

CHAPTER 5. REFERENCE MANUAL

5.3.2 Sections of Makefile, Makefile.config.in, Makefile.common and
Makefile.generic

Figure 5.7 presents the different parts of Makefile.config.in, Makefile.common,
Makefile.generic and Makefile in the order that they are introduced in these files. The
third row of the tabular says whether the given part may be modified by a kernel-integrated
plug-in developer. More details are provided below.

Id Name File Mod. Reference
1 Working directories Makefile.config.in no
2 Installation paths Makefile.config.in no
3 Ocaml stuff Makefile.config.in no
4 Libraries Makefile.config.in no
5 Miscellaneous commands Makefile.config.in no
6 Miscellaneous variables Makefile.config.in no
7 Variables for plug-ins Makefile.config.in no

1 (bis) Working directories Makefile.common no
8 Flags Makefile.common no
9 Verbosing Makefile.common no
10 Shell commands Makefile.common no
11 Command pretty printing Makefile.common no
12 Tests Makefile.common no
13 Generic rules Makefile.generic no
14 Global plug-in variables Makefile no
15 Additional global variables Makefile no
16 Main targets Makefile no
17 Coverage Makefile no
18 Ocamlgraph Makefile no
19 Frama-C Kernel Makefile no
20 Plug-in sections Makefile yes Section 4.4
21 Generic variables Makefile no
22 Toplevel Makefile no
23 GUI Makefile no
24 Standalone obfuscator Makefile no
25 Tests Makefile no
26 Emacs tags Makefile no
27 Documentation Makefile no
28 Installation Makefile yes Not written yet.
29 File headers: license policy Makefile yes Section 4.22
30 Makefile rebuilding Makefile no
31 Cleaning Makefile no
32 Depend Makefile no
33 ptests Makefile no
34 Source distribution Makefile no

Figure 5.7: Sections of Makefile.config.in, Makefile.common and Makefile.

1. Working directories (splitted between Makefile.config.in and Makefile.common
defines the main directories of Frama-C. In particular, it declares the variable

100

5.3. MAKEFILES

UNPACKED_DIRS which should be extended by a plug-in developer if he uses files which
do not belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO is set, see
Section 5.3.3).

2. Installation paths defines where Frama-C has to be installed.

3. Ocaml stuff defines the OCaml compilers and specific related flags.

4. Libraries defines variables for libraries required by Frama-C.

5. Miscellaneous commands defines some additional commands.

6. Miscellaneous variables defines some additional variables.

7. Variables for plug-ins defines some variables used by plug-ins distributed within
Frama-C (and using the configure of Frama-C).

8. Flags defines some variables setting compilation flags.

9. Verbosing sets how make prints the command. In particular, it defines the variable
VERBOSEMAKE which must be set yes in order to see the full make commands in the user
console. The typical use is

$ make VERBOSEMAKE=yes

10. Shell commands sets all the shell commands eventually executed while calling make.

11. Command pretty printing sets all the commands to be used for pretty printing.

Example 5.1 Consider the following target foo in a plug-in specific Makefile.
foo: bar

$(PRINT_CP) $@
$(CP) $< $@

Executing
$ make foo

prints
Copying to foo

while executing
$ make foo VERBOSEMAKE=yes

prints
cp -f bar foo

If one of the two commands is missing for the target foo, either make foo or make foo
VERBOSEMAKE=yes will not work as expected.

12. Tests defines a generic template for testing plug-ins.

13. Generic rules contains rules in order to automatically produces different kinds of files
(e.g. .cm[iox] from .ml or .mli for OCaml files)

101

CHAPTER 5. REFERENCE MANUAL

14. Global plug-in variables declares some plug-in specific variables used throughout
the makefile.

15. Additional global variables declares some other variables used throughout the make-
file.

16. Main targets provides the main rules of the makefile. The most important ones
are top, byte and opt which respectively build the Frama-C interactive, bytecode and
native toplevels.

17. Coverage defines how compile the eponymous library.

18. Ocamlgraph defines how compile the eponymous library.

19. Frama-C Kernel provides variables and rules for the Frama-C kernel. Each part is
described in specific sub-sections.

20. After Section “Kernel”, there are several sections corresponding to plug-ins (see
Section 5.3.3). This is the part that a plug-in developer has to modify in order to
add compilation directives for its plug-in.

21. Generic variables provides variables containing files to be linked in different contexts.

22. Toplevel provides rules for building the files of the form bin/toplevel.*.

23. GUI provides rules for building the files of the form bin/viewer.*

24. Standalone obfuscator provides rules for building the Frama-C obfuscator.

25. Tests provides rules to execute tests. make tests takes care of generating the appropri-
ate environment and launching ptests (see Section 4.6) for all test suites of the kernel
and enabled plugins. It is possible to pass options to ptests through the PTESTS_OPTS
environment variable.

26. Emacs tags provides rules which generate emacs tags (useful for a quick search of
OCaml definitions).

27. Documentation provides rules generating Frama-C source documentation (see Sec-
tion 4.21).

28. Installation provides rules for installing different parts of Frama-C.

29. File headers: license policy provides variables and rules to manage the Frama-C
license policy (see Section 4.22).

30. Makefile rebuilding provides rules in order to automatically rebuild Makefile and
configure when required.

31. Cleaning provides rules in order to remove files generated by makefile rules.

32. Depend provides rules which compute Frama-C source dependencies.

33. Ptests provides rules in order to build ptests (see Section 4.6).

34. Source distribution provides rules usable for distributing Frama-C.

102

5.3. MAKEFILES

5.3.3 Variables of Makefile.dynamic and Makefile.plugin

Figures 5.8 and 5.9 presents all the variables that can be set before including
Makefile.plugin or Makefile.dynamic (see Sections 4.4 and 4.5). The last column is set to
no if and only if the line is not relevant for a standard plug-in developer. Details are provided
below.

Kind Name Specification

Usual
information

PLUGIN_NAME Module name of the plug-in
PLUGIN_DIR Directory containing plug-in source

files
no

PLUGIN_ENABLE Whether the plug-in has to be com-
piled

no

PLUGIN_DYNAMIC Whether the plug-in is dynamically
linked with Frama-C

no

PLUGIN_HAS_MLI Whether the plug-in gets an interface
PLUGIN_DEPENDENCIES Which plug-ins the plug-in depends

on

Source files

PLUGIN_CMO .cmo plug-in files
PLUGIN_CMI .cmi plug-in files without corre-

sponding .cmo
PLUGIN_TYPES_CMO .cmo plug-in files not belonging to

$(PLUGIN_DIR)
PLUGIN_GUI_CMO .cmo plug-in files not belonging to

$(PLUGIN_DIR)

Compilation
flags

PLUGIN_BFLAGS Plug-in specific flags for ocamlc
PLUGIN_OFLAGS Plug-in specific flags for ocamlopt

PLUGIN_EXTRA_BYTE Additional bytecode files to link
against

PLUGIN_EXTRA_OPT Additional native files to link against
PLUGIN_LINK_BFLAGS Plug-in specific flags for linking with

ocamlc
PLUGIN_LINK_OFLAGS Plug-in specific flags for linking with

ocamlopt
PLUGIN_LINK_GUI_BFLAGS Plug-in specific flags for linking a

GUI with ocamlc
PLUGIN_LINK_GUI_OFLAGS Plug-in specific flags for linking a

GUI with ocamlopt

Figure 5.8: Standard parameters of Makefile.dynamic and Makefile.plugin.

• Variable PLUGIN_NAME is the module name of the plug-in.

This name must be capitalized (as is each OCaml module name). It must be distinct
from all other visible modules in the plugin directory, or in the Frama-C kernel.

• Variable PLUGIN_DIR is the directory containing plug-in source files. It is usually set to
src/plugin where plugin is the plug-in name.

103

CHAPTER 5. REFERENCE MANUAL

• Variable PLUGIN_ENABLE must be set to yes if the plug-in has to be compiled. It is
usually set to @plugin_ENABLE@ provided by configure.in where plugin is the plug-in
name.

• Variable PLUGIN_DYNAMIC must be set to yes if the plug-in has to be dynamically linked
with Frama-C.

• Variable PLUGIN_HAS_MLI must be set to yes if plug-in plugin gets a file .mli (which
must be capitalized: Plugin.mli, see Section 4.21) describing its API.

• Variable PLUGIN_DEPENDENCIES must contains the list of name of plug-ins which this
plug-in depends on (see Section 4.10.1). By default, there is no dependency.

• Variables PLUGIN_CMO and PLUGIN_CMI are respectively .cmo plug-in files and .cmi files
without corresponding .cmo plug-in files. For each of them, do not write their file path
nor their file extension: they are automatically added ($(PLUGIN_DIR)/f.cm[io] for
a file f).

• Variable PLUGIN_TYPES_CMO is the .cmo plug-in files which do not belong to
$(PLUGIN_DIR). They usually belong to src/plugin_types where plugin is the plug-in
name (see Section 4.10.2). Do not write file extension (which is .cmo): it is automati-
cally added.

• Variable PLUGIN_GUI_CMO is the .cmo plug-in files which have to be linked with the
GUI (see Section 4.20). As for variable PLUGIN_CMO, do not write their file path nor
their file extension.

• Variables of the form PLUGIN_*_FLAGS are plug-in specific flags for ocamlc, ocamlopt,
ocamldep or ocamldoc.

• Variable PLUGIN_GENERATED is files which must be generated before computing plug-
in dependencies. In particular, this is where .ml files generated by ocamlyacc and
ocamllex must be placed if needed.

• Variable PLUGIN_DEPENDS is the other plug-ins which must be compiled before the
considered plug-in.

Using this variable is deprecated: you should consider to use PLUGIN_DEPENDENCIES
instead.

• Variable PLUGIN_UNDOC is the source files for which no documentation is provided. Do
not write their file path which is automatically set to $(PLUGIN_DIR).

• Variable PLUGIN_TYPES_TODOC is the additional source files to document with the plug-
in. They usually belong to src/plugin_types where plugin is the plug-in name (see
Section 4.10.2).

• Variable PLUGIN_INTRO is the text file to append to the plug-in documentation intro-
duction. Usually this file is doc/code/intro_plugin.txt for a plug-in plugin. It can
contain any text understood by ocamldoc.

• Variable PLUGIN_HAS_EXT_DOC is set to yes if the plug-in has its own reference manual.
It is supposed to be a pdf file generated by make in directory doc/$(PLUGIN_NAME)

104

5.3. MAKEFILES

Kind Name Specification

Dependencies
PLUGIN_DEPFLAGS Plug-in specific flags for

ocamldep
PLUGIN_GENERATED Plug-in files to compiled before

running ocamldep
PLUGIN_DEPENDS Other plug-ins to compiled before

the considered one
no

Documentation

PLUGIN_DOCFLAGS Plug-in specific flags for
ocamldoc

PLUGIN_UNDOC Source files with no provided doc-
umentation

PLUGIN_TYPES_TODOC Additional source files to docu-
ment

PLUGIN_INTRO Text file to append to the plug-in
introduction

PLUGIN_HAS_EXT_DOC Whether the plug-in has an exter-
nal pdf manual

Testing

PLUGIN_NO_TESTS Whether there is no plug-in spe-
cific test directory

PLUGIN_TESTS_DIRS tests to be included in the default
test suite

PLUGIN_TESTS_DIRS_DEFAULT Directories containing tests
PLUGIN_TESTS_LIBS Specific .cmo files used by plug-in

tests
PLUGIN_NO_DEFAULT_TEST Whether to include tests in de-

fault test suite.
PLUGIN_INTERNAL_TEST Whether the test suite of the

plug-in is located in Frama-C’s
own tests directory

PLUGIN_PTESTS_OPTS Plug-in specific options to ptests

Distribution
PLUGIN_DISTRIBUTED_BIN Whether to include the plug-in in

binary distribution
no

PLUGIN_DISTRIBUTED Whether to include the plug-in in
source distribution

no

PLUGIN_DISTRIB_EXTERNAL Additional files to be included in
the distribution

no

Figure 5.9: Special parameters of Makefile.dynamic and Makefile.plugin.

105

CHAPTER 5. REFERENCE MANUAL

• Variable PLUGIN_NO_TEST must be set to yes if there is no specific test directory for
the plug-in.

• Variable PLUGIN_TESTS_DIRS is the directories containing plug-in tests. Its default
value is tests/$(notdir $(PLUGIN_DIR))).

• Variable PLUGIN_TESTS_LIB is the .cmo plug-in specific files used by plug-in tests. Do
not write its file path (which is $(PLUGIN_TESTS_DIRS)) nor its file extension (which is
.cmo).

• Variable PLUGIN_NO_DEFAULT_TEST indicates whether the test directory of the plug-in
should be considered when running Frama-C default test suite. When set to a non-empty
value, the plug-in tests are run only through make $(PLUGIN_NAME)_tests.

• Variable PLUGIN_INTERNAL_TEST indicates whether the tests of the plug-in are included
in Frama-C’s own tests directory. When set to a non-empty value, the tests are searched
there. When unset, tests are assumed to be in the tests directory of the plugin main
directory itself. Having the tests of a plugin inside Frama-C’s own tests suite is
deprecated. Plugins should be self-contained.

• Variable PLUGIN_PTESTS_OPTS allows to give specific options to ptests when run-
ning the tests. It comes in addition to PTESTS_OPTS (see 5.3.2§25). For instance,
PLUGIN_PTESTS_OPTS:=-j 1 will deactivate parallelization of tests in case the plugin
does not support concurrent runs. It is only used by Makefile.dynamic.

• Variable PLUGIN_DISTRIB_BIN indicates whether the plug-in should be included in a
binary distribution.

• Variable PLUGIN_DISTRIBUTED indicates whether the plug-in should be included in a
source distribution.

• Variable PLUGIN_DISTRIB_EXTERNAL is the list of files that should be included within
the source distribution for this plug-in. They will be put at their proper place for a
release.

As previously said, the above variables are set before including Makefile.plugin in order
to customize its behavior. They must not be use anywhere else in the Makefile. In order
to deal with this issue, for each plug-in p, Makefile.plugin provides some variables which
may be used after its inclusion defining p. These variables are listed in Figure 5.10. For each
variable of the form p_VAR, its behavior is exactly equivalent to the value of the parameter
PLUGIN_VAR for the plug-in p2.

5.3.4 Makefile.dynamic

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2Variables of the form p_*CMX have no PLUGIN_*CMX counterpart but their meanings should be easy to
understand.

3plugin is the module name of the considered plug-in (i.e. as set by $(PLUGIN_NAME)).

106

http://bts.frama-c.com

5.4. PTESTS

Kind Name3

Usual information plugin_DIR

Source files

plugin_CMO
plugin_CMI
plugin_CMX

plugin_TYPES_CMO
plugin_TYPES_CMX

Compilation flags

plugin_BFLAGS
plugin_OFLAGS

plugin_LINK_BFLAGS
plugin_LINK_OFLAGS

plugin_LINK_GUI_BFLAGS
plugin_LINK_GUI_OFLAGS

Dependencies plugin_DEPFLAGS
plugin_GENERATED

Documentation plugin_DOCFLAGS
plugin_TYPES_TODOC

Testing plugin_TESTS_DIRS
plugin_TESTS_LIB

Figure 5.10: Variables defined by Makefile.plugin.

5.4 Ptests

5.4.1 Pre-defined macros for tests commands

Ptests pre-defines a certain number of macros for each test about to be run. Figure 5.11 gives
their definition.

Name Expansion
frama-c path to frama-c executable
PTEST_CONFIG either the empty string or _ followed by the name of the

current alternative configuration (see section 4.6.3).
PTEST_DIR current test suite directory
PTEST_FILE path to the current test file
PTEST_NAME basename of the current test file (without suffix)
PTEST_NUMBER rank of current test in the test file. There are in fact two in-

dependent numbering schemes: one for EXECNOW commands
and one for regular tests (if more than one OPT).

Figure 5.11: Predefined macros for ptests

107

Appendix A

Changes

This chapter summarizes the major changes in this documentation between each Frama-C
release. First we list changes of the last release.

Sodium-20150201

• Type Library: document Datatype.Serializable_undefined.

• Command Line Options: document Parameter_sig.Kernel_function_set.

• Configure.in: warn about using Frama-C macros within conditionals

• Logical Annotations: document ACSL extended clauses mechanism (added sec-
tion 4.18).

• Tutorial: fix hello_world.ml.

Neon-20140301

• Reference Manual: update list of main kernel modules.

• Logical Annotations: document module Property.

• Command Line Options: update according to kernel changes that split the module
Plugin into several modules.

• Architecture, Plug-in Registration and Access and Reference Manual: docu-
ment registration of a plug-in through a .mli file.

• Makefiles: introducing Makefile.generic.

• Testing: MACRO configuration directive.

Fluorine-20130601

• Tutorial: fully rewritten.

• Architecture and Reference Manual: remove references to Cilutil module.

109

APPENDIX A. CHANGES

Oxygen-20121001

• Makefile WARN_ERROR_ALL variable.

• Log: Debug category (˜dkey argument).

• Visitor: DoChildrenPost action.

• Testing: document the need for directories to store result and oracles.

• Project Management System: Fine tuning of AST dependencies.

• Testing: added PTESTS_OPTS and PLUGIN_PTESTS_OPTS Makefile’s variables.

• Type: document the type library.

• Logical Annotations: fully updated.

• Reference Manual: update kernel files.

• Testing: merge parts in Advanced Plug-in Development and in Reference Manual.

• Website: refer to CEA internal documentation.

• Command Line Options: explain how to modify the default behavior of an option.

• Command Line Options: fully updated.

• Project Management System: fully updated.

• Plug-in Registration and Access: Type replaced by Datatype and document labeled
argument journalize.

• Configure.in: updated.

• Plug-in General Services: updated.

• Software Architecture: Type is now a library, not just a single module.

Nitrogen-20111001

• Tutorial of the Future: new chapter for preparing a future tutorial.

• Types as first class values: links to articles.

• Tutorial: kernel-integrated plug-ins are now deprecated.

• Visitors: example is now out-of-date.

Carbon-20110201

Unchanged.

110

Carbon-20101201-beta1

• Visitors: update example to new kernel API.

• Documentation: external plugin API documentation.

• Visitors: fix bug (replace DoChildrenPost by ChangeDoChildrenPost), change se-
mantics wrt vstmt_aux.

Carbon-20101201-beta1

• Very Important Preliminary Warning: adding this very important chapter.

• Tutorial: fix bug in the ‘Hello World’ example.

• Testing: updated semantics of CMD and STDOPT directives.

• Initialization Steps: updated according to new options -then and -then-on and to
the new ‘Files Setting’ stage.

• Visitors: example updated

We list changes of previous releases below.

Boron-20100401

• Configure.in: updated

• Tutorial: the section about kernel-integrated plug-in is out-of-date

• Project: no more rehash in datatypes

• Initialisation Steps: fixed according to the current implementation

• Plug-in Registration and Access: updateed according to API changes

• Documentation: updated and improved

• Introduction: is aware of the Frama-C user manual

• Logical Annotations: fully new section

• Tutorial: fix an efficiency issue with the Makefile of the Hello plug-in

Beryllium-20090902

• Makefiles: update according to the new Makefile.kernel

111

APPENDIX A. CHANGES

Beryllium-20090901

• Makefiles: update according to the new makefiles hierarchy

• Writing messages: fully documented

• Initialization Steps: the different stages are more precisely defined. The implemen-
tation has been modified to take into account specifities of dynamically linked plug-ins

• Project Management System: mention value descr in Datatype

• Makefile.plugin: add documentation for additional parameters

Beryllium-20090601-beta1

• Initialization Steps: update according to the new implementation

• Command Line Options: update according to the new implementation

• Plug-in General Services: fully new section introducing the new module Plugin

• File Tree: update according to changes in the kernel

• Makefiles: update according to the new file Makefile.dynamic and the new file
Makefile.config.in

• Architecture: update according to the recent implementation changes

• Tutorial: update according to API changes and the new way of writting plug-ins

• configure.in: update according to changes in the way of adding a simple plug-in

• Plug-in Registration and Access: update according to the new API of module Type

Lithium-20081201

• Changes: fully new appendix

• Command Line Options: new sub-section Storing New Dynamic Option Values

• Configure.in: compliant with new implementations of configure_library and
configure_tool

• Exporting Datatypes: now embeded in new section Plug-in Registration and Access

• GUI: update, in particular the full example has been removed

• Introduction: improved

• Plug-in Registration and Access: fully new section

• Project: compliant with the new interface

• Reference Manual: integration of dynamic plug-ins

112

• Software architecture: integration of dynamic plug-ins

• Tutorial: improve part about dynamic plug-ins

• Tutorial: use Db.Main.extend to register an entry point of a plug-in.

• Website: better highlighting of the directory containing the html pages

Lithium-20081002+beta1

• GUI: fully updated

• Testing: new sub-section Alternative testing

• Testing: new directive STDOPT

• Tutorial: new section Dynamic plug-ins

• Visitor: ChangeToPost in sub-section Action Performed

Helium-20080701

• GUI: fully updated

• Makefile: additional variables of Makefile.plugin

• Project: new important note about registration of internal states in Sub-section In-
ternal State: Principle

• Testing: more precise documentation in the reference manual

Hydrogen-20080502

• Documentation: new sub-section Website

• Documentation: new ocamldoc tag @plugin developer guide

• Index: fully new

• Project: new sub-section Internal State: Principle

• Reference manual: largely extended

• Software architecture: fully new chapter

Hydrogen-20080501

• First public release

113

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Jean-Christophe Filliâtre, Thierry Hubert, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Specification Language.
Version 1.8, March 2014.

[2] Patrick Baudin and Anne Pacalet. Slicing plug-in. http://frama-c.com/slicing.html.

[3] Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing a generic
graph library using ML functors. In Marco T. Morazán, editor, Trends in Functional
Programming, volume 8 of Trends in Functional Programming, pages 124–140. Intellect,
UK/The University of Chicago Press, USA, 2008. http://ocamlgraph.lri.fr.

[4] Loïc Correnson, Pascal Cuoq, Florent Kirchner, Armand Puccetti, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual, February 2015. http:
//frama-c.cea.fr/download/user-manual.pdf.

[5] Loïc Correnson, Zaynah Dargaye, and Anne Pacalet. Frama-C’s WP plug-in, February
2015. http://frama-c.com/download/frama-c-wp-manual.pdf.

[6] Loïc Correnson and Julien Signoles. Combining Analysis for C Program Verification. In
Formal Methods for Industrial Critical Systems (FMICS), 2012.

[7] Pascal Cuoq, Damien Doligez, and Julien Signoles. Lightweight Typed Customizable
Unmarshaling. ML Workshop’11, September 2011.

[8] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C, A Program Analysis Perspective. In the 10th International
Conference on Software Engineering and Formal Methods (SEFM 2012), volume 7504
of LNCS, pages 233–247. Springer, 2012.

[9] Pascal Cuoq and Julien Signoles. Experience Report: OCaml for an industrial-strength
static analysis framework. In Proceedings of International Conference of Functional
Programming (ICFP’09), pages 281–286, New York, NY, USA, September 2009. ACM
Press.

[10] Pascal Cuoq, Boris Yakobowski, and Virgile Prevosto. Frama-C’s value analysis plug-in,
February 2015. http://frama-c.cea.fr/download/value-analysis.pdf.

[11] Free Software Foundation. GNU ’make’, April 2006. http://www.gnu.org/software/
make/manual/make.html#Flavors.

[12] Jacques Garrigue, Benjamin Monate, Olivier Andrieu, and Jun Furuse. LablGTK2.
http://lablgtk.forge.ocamlcore.org.

115

http://frama-c.com/slicing.html
http://ocamlgraph.lri.fr
http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.cea.fr/download/value-analysis.pdf
http://www.gnu.org/software/make/manual/make.html#Flavors
http://www.gnu.org/software/make/manual/make.html#Flavors
http://lablgtk.forge.ocamlcore.org

BIBLIOGRAPHY

[13] Philippe Hermann and Julien Signoles. Frama-C’s RTE plug-in, April 2013.
http://frama-c.com/download/frama-c-rte-manual.pdf.

[14] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. Formal Aspects of Computing,
pages 1–37, 2015. Extended version of [8].

[15] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system. http://caml.inria.fr/pub/docs/manual-ocaml/index.
html.

[16] Donald Michie. Memo functions: a language feature with "rote-learning" properties.
Research Memorandum MIP-R-29, Department of Machine Intelligence & Perception,
Edinburgh, 1967.

[17] Donald Michie. Memo functions and machine learning. Nature, 218:19–22, 1968.

[18] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of C Programs. In
CC ’02: Proceedings of the 11th International Conference on Compiler Construction,
pages 213–228, London, UK, 2002. Springer-Verlag.

[19] Julien Signoles. Foncteurs impératifs et composés: la notion de projet dans Frama-C. In
Hermann, editor, JFLA 09, Actes des vingtièmes Journées Francophones des Langages
Applicatifs, volume 7.2 of Studia Informatica Universalis, pages 245–280, 2009. In French.

[20] Julien Signoles. Une bibliothèque de typage dynamique en OCaml. In Hermann, editor,
JFLA 11, Actes des vingt-deuxièmes Journées Francophones des Langages Applicatifs,
Studia Informatica Universalis, pages 209–242, January 2011. In French.

[21] Nicolas Stouls and Virgile Prevosto. Frama-C’s Aoraï plug-in, April 2013.
http://frama-c.com/download/frama-c-aorai-manual.pdf.

116

http://frama-c.com/download/frama-c-rte-manual.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://frama-c.com/download/frama-c-aorai-manual.pdf

LIST OF FIGURES

List of Figures

2.1 Plug-in Integration Overview. 14
2.2 Control flow graph for file test.c. 22
2.3 Control flow graph colored with reachability information. 24
2.4 CFG plug-in architecture . 26

3.1 Architecture Design. 34
3.2 Differences between standard plug-ins and kernel-integrated ones. 36

4.1 ptests options. 50
4.2 Directives in configuration headers of test files. 51
4.3 Representation of the Frama-C State. 70
4.4 Interaction between the project library and your registered global data. . . . 71
4.5 Indices of AST nodes. 86

5.1 Frama-C directories. 93
5.2 Cil directories. 94
5.3 Kernel directories. 95
5.4 Main kernel modules. 96
5.5 Sections of configure.in. 97
5.6 Relationship between the Makefiles . 99
5.7 Sections of Makefile.config.in, Makefile.common and Makefile. 100
5.8 Standard parameters of Makefile.dynamic and Makefile.plugin. 103
5.9 Special parameters of Makefile.dynamic and Makefile.plugin. 105
5.10 Variables defined by Makefile.plugin. 107
5.11 Predefined macros for ptests . 107

117

INDEX

Index

Abstract Interpretation, 90
Lattice, see Lattice
Toolbox, 35, 90, 95

Abstract Syntax Tree, see AST
Abstract_interp, 35, 90, 95
ACSL, 33, 35, 40, 94

Frontend, 95
ai, 95
Alarms, 96
Annotation, 35, 84, 88, 96
Annotations, 88, 96

add_assert, 86
ANSI C Specification language, see ACSL
Architecture, 33

Plug-in, 13
AST, 33, 35, 70, 83, 84, 88, 94, 96

Copying, 85, 86
Initializer, 96
Modification, 35, 39, 76, 84, 85
Sharing, see Sharing

Ast, 96
add_monotonic_state, 74
get, 25, 69
mark_as_changed, 74
mark_as_grown, 74
self, 30, 76, 86

Ast_info, 96

b_extended, 88
bin, 94
Binary, 94
Boot, 81, 96

C Intermediate Language, see Cil
Cabs

file, 83
Cabs2cil

convFile, 83
Call graph computation, 35
Callgraph, 35, 94
CEA_INRIA_LGPL, 92

CFG, 96
Cfg, 94
check_plugin, 41
CIL, 94

Syntactic Analysis, 94
Visitor, 96

Cil, 33, 34, 35, 39, 83
API, 34, 35
AST, see AST
Visitor, 83
Entry Point, 84

Cil, 35, 94
cilVisitor, 83, 84
behavior, 86
current_kinstr, 86
fill_global_tables, 85
get_filling_actions, 85, 86
vexpr, 86
vfile, 21
vglob, 84
vlogic_ctor_info_decl, 84
vlogic_ctor_info_use, 84
vlogic_info_decl, 84
vlogic_info_use, 84
vlogic_type_info_decl, 84
vlogic_type_info_use, 84
vlogic_var_decl, 84
vlogic_var_use, 84
voffs, 84
vstmt, 84
vvdec, 84
vvrbl, 84

copy_visit, 85, 86
DoChildren, 21, 23
DoChildrenPost, 21
dummyStmt, 67
get_name, 85
get_kernel_function, 86
get_original_name, 85
get_stmt, 86
inplace_visit, 85

119

INDEX

JustCopy, 21
lzero, 86
register_behavior_extension, 89
reset_behavior_name, 85
set_name, 85
SkipChildren, 21
visitAction, 84
ChangeDoChildrenPost, 85, 86
ChangeTo, 84, 86
ChangeToPost, 84
DoChildren, 84, 86
DoChildrenPost, 84
JustCopy, 84, 86
JustCopyPost, 85
SkipChildren, 84, 86

visitCilAstType, 84
visitCilFile, 84
visitCilFileCopy, 84
visitCilFileSameGlobals, 84
visitor_behavior, 85

cil, 39, 94, 94
src, 35, 94
ext, 94
frontc, 94
logic, 95

Cil_datatype, 60
Fundec
Hashtbl, 30

Stmt
equal, 60
Hashtbl, 72
pretty, 60, 67
t, 67
ty, 67, 68

Varinfo, 72
Cil_printer

register_behavior_extension, 89
Cil_state_builder, 71, 72

Stmt_hashtbl, 72
Cil_types, 35, 94

binop
Div, 86
Mod, 86

Block, 20
Break, 20
compinfo, 85, 86
Continue, 20
enuminfo, 85, 86
exp_node

BinOp, 86
fieldinfo, 85, 86
file, 83–86
fundec, 23
GFun, 21
global, 84
Goto, 20
If, 20
Instr, 20
logic_ctor_info, 84
logic_info, 84–86
logic_type_info, 84
logic_var, 84–86
Loop, 20
offset, 84
relation
Rneq, 86

Return, 20
stmt, 85, 86
Switch, 20
TryExcept, 20
TryFinally, 20
typeinfo, 85, 86
UnspecifiedSequence, 20
varinfo, 72, 84–86

Cil_types.behavior
., 88

CilE, 96
Cmdline, 36, 80, 81, 96

Exit, 82
is_going_to_load, 82
nop, 82
run_after_configuring_stage, 82
run_after_early_stage, 81
run_after_exiting_stage, 82
run_after_extended_stage, 73, 81
run_after_loading_stage, 82
run_after_setting_files, 82
run_during_extending_stage, 81
stage
Configuring, 82
Early, 81
Exiting, 82
Extended, 81
Extending, 81
Loading, 82

Command, 96
Command Line, 16, 25

-ocode, 59

120

INDEX

Option, 53, 77, 78
Parsing, 80

Config, 96
configure.in, 40, 43, 97

check_plugin, 41
check_plugin_dependencies, 44
configure_library, 41
configure_tools, 41
DYNAMIC_plugin, 41
ENABLE_plugin, 41
FORCE_plugin, 41
HAS_library, 42
LIB_SUFFIX, 42
OBJ_SUFFIX, 42
plugin_require, 43
plugin_require_external, 42
plugin_use, 43
plugin_use_external, 42
REQUIRE_plugin, 41
SELECTED_library, 42
USE_plugin, 41

Consistency, 39, 70, 77, 84, 85
Context Switch, 74, 77
Control Flow Graph, see CFG
Copyright, 92
CP, 101

Dataflow, 35, 90, 94
Dataflow analysis, 35, 94
Datatype, 59, 60, 72, 74
Datatype, 60

Bool, 31
bool, 60
char, 60
func, 67, 68
func2, 60
func3, 68
Function, 64
identity, 61
Int, 62
int, 60
List, 62, 64
list, 60
Make, 61, 62
never_any_project, 61
Pair, 72
Polymorphic, 62
Polymorphic2, 62
pp_fail, 62
Ref, 75

S, 60, 75
S_with_collections, 60
Serializable_undefined, 62, 67
String, 30, 60
Hashtbl, 62
Set, 60

string, 60
Undefined, 62
undefined, 62
unit, 67, 68

Db, 34, 36, 65, 65, 66, 91, 95, 96
From.self, 73
Impact.compute_pragmas, 65
Main, 14
extend, 13–16, 19, 54, 80, 82, 86

progress, 90
Value
compute, 72, 76
get_stmt_state, 23
is_computed, 23, 31, 70, 76
is_reachable, 23
self, 72, 73, 77

Db.Properties, 88
Db.Value

self, 30
Design, 14

main_window_extension_points, 90
register_source_selector, 24

register_extension, 24, 90
doc, 94
Documentation, 91, 94, 102

Kernel, 91
Plug-in, see Plug-in Documentation
Source, 91
Tags, 91

Dot, 42
Dynamic, 14, 36, 66, 91, 96

get, 66, 67, 68
Parameter, 79
Bool, 79

register, 66, 66, 67

Emitter, 78
Emitter, 96

create, 88
ENABLE_plugin, 45
Entry Point, 70
Entry point, 13
Equality

Physical, 74, 75

121

INDEX

Structural, 75
external, 94
Extlib, 35, 95

the, 86

File, 96
add_code_transformation_after_cleanup, 83
add_code_transformation_before_cleanup, 83
create_project_from_visitor, 86
init_from_c_files, 83
init_from_cmdline, 83
init_project_from_cil_file, 76, 83
init_project_from_visitor, 76, 83
must_recompute_cfg, 83
new_file_type, 83

Floating_point, 96
FRAMAC_LIBDIR, 18, 26, 46
FRAMAC_SHARE, 18, 26, 46
From, 73
From_parameters

ForceCallDeps, 79
Frontc

add_syntactic_transformation, 83
Function, 35

Globals, 35, 96
Functions
get, 24

set_entry_point, 70
GnomeCanvas, 42
Gtk_helper

graph_window, 24
GUI, 14, 90, 97
gui, 97
Gui_init, 96

Hashtable, 71, 72
Header, 92, 102
headers, 92, 94
Hello, 39
Highlighting, 90
Hook, 13

index.html, 91, 92
Initialization, 67, 80, 81
install-doc-code, 92
Ival, 35, 95

Journal, 14, 36, 96
Journalisation, 61
Journalization, 29, 66, 81, 82

Kernel, 33, 34, 35, 40, 74, 95, 98, 102
Toolbox, 95

Kernel, 78, 96
CodeOutput, 59
SafeArrays, 80
Unicode, 79

kernel, 95
Kernel_function, 72, 96

dummy, 67
get_definition, 24
Make_Table, 73
pretty, 67
t, 67, 72
ty, 67, 68

Kind, 72

Lablgtk, 42, 90
Lablgtksourceview2, 42
Lattice, 34, 35, 90, 95
Lattice_type, 90
Lexing, 34, 35
LGPL, 92
lib, 94, 95

fc, 94
gui, 94
plugins, 94

Library, 40, 94
Configuration, 41, 97
Dependency, 42

licences, 92
License, 92, 102
LICENSES, 92
licenses, 94
Linking, 34–36, 80, 81
Lmap, 35, 90, 95
Lmap_bitwise, 35, 90, 95
Loading, 70, 76, 82
Location, 89, 95
Locations, 35, 89, 95

enumerate_valid_bits, 90
Location, 89
location, 89
Location_Bits, 89
Location_Bytes, 89
Zone, 89

Log, 35, 96
add_listener, 57
log_channel, 58
Messages, 54, 55
abort, 55

122

INDEX

debug, 55
error, 55
failure, 55
fatal, 55
feedback, 55
log, 58
result, 55
verify, 56
warning, 55
with_log, 58

new_channel, 58
print_delayed, 59
print_on_output, 59
set_echo, 57
set_output, 59
with_log_channel, 58

Logging, see Messages
logic, 95
Logic Type System, 95
Logic_const, 88, 95

prel, 86
Logic_typing, 95

register_behavior_extension, 88
Logic_utils, 88

expr_to_term, 86
Loop, 96

Makefile, 44, 90–92, 94, 98, 98, 99, 100
Makefile.common, 98, 100
Makefile.config.in, 45, 98, 99, 100
Makefile.dynamic, 14, 18, 26, 45, 46, 64,

98, 99, 103
Makefile.dynamic_config, 98
Makefile.dynamic_config.external, 98
Makefile.dynamic_config.internal, 98
Makefile.generating, 98
Makefile.generic, 98, 100
Makefile.kernel, 98
Makefile.plugin, 45, 45, 98, 99, 103
Marshaling, 61
memo, 72
Memoization, 69, 72, 73
Memory State, 34, 35
Memory States

Toolbox, 95
memory_states, 95
Messages, 53
misc, 95
Module Initialization, see Initialization

ocamlgraph, 94
Occurrence, 41, 90
Oracle, 47, 48, 50

Parameter, 69
Parameter_customize, 80, 96

set_negative_option_name, 80
Parameter_sig, 96

Bool, 78
Builder, 78
Empty_string, 78
False, 78, 78
Int, 78
Kernel_function_set, 78
String, 78
String_set, 78, 79
True, 78
Zero, 78

Int, 78, 78
S, 78
String_set, 79

Parameter_state
get_selection, 77

Parameters, 78
Parsing, 34, 35
Pdg, 73
Platform, 97
Plug-in, 13, 33, 36

Access, 66
API, 29, 66
Architecture, 13
Command Line Options, 16, 25
Compilation, 102
Compiled, 94
Configure, 29
Dependency, 40, 40, 43, 97
Directory, 90, 103
Distribution, 106
Documentation, 19, 91, 91, 104
GUI, 14, 23, 42, 81, 90, 104
Implementation, 95
Initialization, see Initialization
Kernel-integrated, 36
Access, 65
Registration, 65

License, 92
Makefile, 18, 26
Messages, 15
Name, 103
Occurrence, see Occurrence

123

INDEX

Pdg, see Pdg
Registration, 15, 66
Script, 14
Slicing, see Slicing
Sparecode, see Sparecode
Status, 40
Test, 106
Testing, 19
Types, 34, 65, 95, 104
Wished, 97

plugin_types, 65
Plugin

Kernel-integrated, 97, 100
Plugin, 13, 14, 36, 53, 96

Register, 15, 16, 19, 25, 53, 54, 67, 78
PLUGIN_BFLAGS, 104
plugin_BFLAGS, 107
PLUGIN_CMI, 104
plugin_CMI, 107
PLUGIN_CMO, 18, 26, 45, 46, 64, 104
plugin_CMO, 107
PLUGIN_DEPENDENCIES, 64, 104
PLUGIN_DEPENDS, 104
PLUGIN_DEPFLAGS, 104
plugin_DEPFLAGS, 107
PLUGIN_DIR, 45, 103
plugin_DIR, 107
PLUGIN_DISTRIB_BIN, 106
PLUGIN_DISTRIB_EXTERNAL, 106
PLUGIN_DISTRIBUTED, 45, 106
PLUGIN_DOCFLAGS, 104
plugin_DOCFLAGS, 107
PLUGIN_DYNAMIC, 104
PLUGIN_ENABLE, 45, 104
PLUGIN_EXTRA_BYTE, 104
PLUGIN_EXTRA_OPT, 104
PLUGIN_GENERATED, 104
plugin_GENERATED, 107
PLUGIN_GUI_CMO, 26, 90, 104
plugin_GUI_OFLAGS, 107
PLUGIN_HAS_EXT_DOC, 104
PLUGIN_HAS_MLI, 45, 64, 104
PLUGIN_INTERNAL_TEST, 45, 106
PLUGIN_INTRO, 91, 104
plugin_LINK_BFLAGS, 107
PLUGIN_LINK_GUI_BFLAGS, 104
plugin_LINK_GUI_BFLAGS, 107
PLUGIN_LINK_GUI_OFLAGS, 104
PLUGIN_LINK_OFLAGS, 104

plugin_LINK_OFLAGS, 107
PLUGIN_NAME, 18, 26, 45, 46, 64, 91, 103, 106
PLUGIN_NO_DEFAULT_TEST, 106
PLUGIN_NO_TEST, 106
PLUGIN_OFLAGS, 104
plugin_OFLAGS, 107
PLUGIN_PTESTS_OPTS, 106
PLUGIN_TESTS_DIRS, 106
plugin_TESTS_DIRS, 107
PLUGIN_TESTS_LIB, 106
plugin_TESTS_LIB, 107
PLUGIN_TYPES_CMO, 45, 66, 101, 104
plugin_TYPES_CMO, 107
plugin_TYPES_CMX, 107
PLUGIN_TYPES_TODOC, 104
plugin_TYPES_TODOC, 107
PLUGIN_UNDOC, 104
Preprocessing, 35
Pretty_source

PVDecl, 24
PRINT_CP, 101
Printer, 96
printer, 95
Printer_api, 96

S.pp_exp, 20
S.pp_instr, 20
S.pp_stmt, 20
S.pp_varinfo, 21

Project, 29, 39, 61, 69, 83, 85, 95
Current, 69, 70, 74, 76, 77, 85
Initial, 83
Use, 76

Project, 14, 34, 36, 76
clear, 31, 32, 76, 77
current, 69, 76
IOError, 76
load, 76
on, 77, 77
save, 76
set_current, 76, 76, 77
t, 32

project, 95
Project_skeleton

t, 76
Property, 96

Status, 96
Property, 88, 96
Property_status, 88, 96
Ptests, 47, 102

124

INDEX

PTESTS_OPTS, 102

Rangemap, 35
Rte, 45

Saving, 39, 70, 72, 76
Selection, 70, 77
self, 72
Session, 76
share, 94
Sharing, 85, 86

Widget, 90
Side-Effect, 75, 80
Slicing, 92
Sparecode, 47
Special_hooks, 96
src, 39, 94, 95

ai, 35
kernel, 35
lib, 35
memory_state, 35
misc, 35
project, 36
type, 36

State, 69, 70, 77, 78, 83, 84
Cleaning, 75, 77
Dependency, 70, 72, 74, 77
Postponed, 73, 81

Functionalities, 70
Global Version, 74
Kind, see Kind
Local Version, 74, 75
Name, 72, 74
Registration, 70–72
Selection, see Selection
Sharing, 75

State, 73
dummy, 73

State_builder, 71, 72
Hashtbl, 30
Ref, 31, 75
Register, 71, 72, 74, 75

State_dependency_graph
S.add_codependencies, 73

State_selection, 77
only_dependencies, 76
t, 32
with_dependencies, 31, 32, 77

Stmts_graph, 96
Structural_descr

p_int, 61, 62
pack, 62
structure
Sum, 61, 62

t
Structure, 61, 62

Tags, 102
Task, 96
Test, 19, 47, 102

Configuration, 48
Directive, 49
Header, 48, 50
Suite, 47, 48, 94

Test
Directive
CMD, 51, 52
COMMENT, 51
DONTRUN, 51
EXECNOW, 51, 52
FILEREG, 51, 53
FILTER, 51
GCC, 51
MACRO, 51, 52
OPT, 49, 51
STDOPT, 51, 52

test_config, 48, 51, 53
tests, 47, 51, 94
Tool, 40

Configuration, 41, 97
Dependency, 42

Type, 95
Dynamic, 59
Library, 59
Value, 60, 66, 67

Type, 14, 36, 95
Abstract, 67, 68
AlreadyExists, 67
name, 62
par, 61, 62
precedence
Basic, 61
Call, 61

t, 60, 66, 67
type, 95
Type value, 95
Typed_parameter, 96

t, 78
Typing, 34, 35

125

INDEX

UNPACKED_DIRS, 45, 65, 101

Variable
Global, 35

VERBOSEMAKE, 44, 101
Visitor, 19, 83

Behavior, 85, 85
Cil, see Cil Visitor
Copy, 76, 85, 85, 86
In-Place, 85, 85

Visitor, 35, 96
frama_c_inplace, 20
frama_c_visitor
current_kf, 86
vglob_aux, 21, 84
vstmt_aux, 21, 23, 84

generic_frama_c_visitor, 83, 86
visitFramacFileSameGlobals, 25
visitFramacFunction, 30

WARN_ERROR_ALL, 44
Website, 92

126

	Foreword
	Introduction
	About this document
	Outline

	Tutorial
	What a Plug-in Looks Like?
	The Hello plug-in
	A Simple Script
	Registering a Script as a Plug-in
	Displaying Messages
	Adding Command Line Options
	Writing a Makefile
	Testing your Plug-in
	Documenting your Source Code

	The CFG plug-in
	Visiting the AST
	Interfacing with a kernel-integrated plug-in
	Extending the Frama-C GUI
	Plug-In registration and command line options
	Splitting files and writing a Makefile
	Getting your Plug-in Usable by Others
	Writing your Plug-in into the Journal
	Writing a Configure Script
	Getting your plug-in Usable in a Multi Projects Setting

	Software Architecture
	General Description
	Cil: C Intermediate Language
	Kernel
	Plug-ins

	Advanced Plug-in Development
	File Tree Overview
	Frama-C Configure.in
	Principle
	Addition of a Simple Plug-in
	Configuration of New Libraries or Tools
	Addition of Library/Tool Dependencies
	Addition of Plug-in Dependencies

	Plug-in Specific Configure.in
	Frama-C Makefile
	Plug-in Specific Makefile
	Using Makefile.dynamic
	Compiling Frama-C and external plug-ins at the same time

	Testing
	Using ptests
	Configuration
	Alternative Testing
	Detailed options
	Detailed directives

	Plug-in General Services
	Logging Services
	From printf to Log
	Log Quick Reference
	Logging Routine Options
	Advanced Logging Services

	The Type library: Type Values and Datatypes
	Type Value
	Datatype

	Plug-in Registration and Access
	Registration through a .mli File
	Kernel-integrated Registration and Access
	Dynamic Registration and Access

	Journalization
	Project Management System
	Overview and Key Notions
	State: Principle
	Registering a New State
	Direct Use of Low-level Functor State_builder.Register
	Using Projects
	Selections

	Command Line Options
	Definition
	Tuning

	Initialization Steps
	Customizing the AST creation
	Visitors
	Entry Points
	Methods
	Action Performed
	Visitors and Projects
	In-place and Copy Visitors
	Differences Between the Cil and Frama-C Visitors
	Example

	Logical Annotations
	Extending ACSL annotations
	Locations
	Representations
	Map Indexed by Locations

	GUI Extension
	Documentation
	General Overview
	Source Documentation
	Website

	License Policy

	Reference Manual
	File Tree
	The cil directory
	The src directory

	Configure.in
	Makefiles
	Overview
	Sections of Makefile, Makefile.config.in, Makefile.common and Makefile.generic
	Variables of Makefile.dynamic and Makefile.plugin
	Makefile.dynamic

	Ptests
	Pre-defined macros for tests commands

	Changes
	Bibliography
	List of Figures
	Index

