
Developer Manual





Plug-in Development Guide
Release 23.1 (Vanadium)

Julien Signoles with Thibaud Antignac, Loïc Correnson, Matthieu Lemerre and
Virgile Prevosto

This work is licensed under a Creative Commons “Attribution-
ShareAlike 4.0 International” license.

CEA-List, Université Paris-Saclay
Software Safety and Security Lab

©2009-2021 CEA LIST

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en




Contents

Foreword 9

1 Introduction 11
1.1 About this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Tutorial 13
2.1 Quick Setup of a Development Environment . . . . . . . . . . . . . . . . . . . 13

2.1.1 Emacs Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Quick Merlin guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 What Does a Plug-in Look Like? . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The Hello plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 A Simple Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Registering a Script as a Plug-in . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Displaying Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Adding Command Line Options . . . . . . . . . . . . . . . . . . . . . 18
2.3.5 Writing a Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.6 Testing your Plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.7 Documenting your Source Code . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The ViewCfg plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Visiting the AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Plug-In registration and command-line options . . . . . . . . . . . . . 29
2.4.3 Interfacing with a kernel-integrated plug-in . . . . . . . . . . . . . . . 30
2.4.4 Extending the Frama-C GUI . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.5 Splitting files and writing a Makefile . . . . . . . . . . . . . . . . . . . 33
2.4.6 Getting your Plug-in Usable by Others . . . . . . . . . . . . . . . . . . 36
2.4.7 Writing your Plug-in into the Journal . . . . . . . . . . . . . . . . . . 36
2.4.8 Writing a Configure Script . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.9 Getting your plug-in Usable in a Multi Projects Setting . . . . . . . . 37

5



CONTENTS

3 Software Architecture 41
3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Kernel Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Kernel Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Advanced Plug-in Development 45
4.1 Frama-C Configure.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Addition of a Simple Plug-in . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Configuration of New Libraries or Tools . . . . . . . . . . . . . . . . . 47
4.1.4 Addition of Library/Tool Dependencies . . . . . . . . . . . . . . . . . 48
4.1.5 Addition of Plug-in Dependencies . . . . . . . . . . . . . . . . . . . . . 49

4.2 Plug-in Specific Configure.ac . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Frama-C Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Plug-in Specific Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Using Makefile.dynamic . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Compiling Frama-C and external plug-ins at the same time . . . . . . 52

4.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.1 Using ptests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.3 Alternative Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.4 Detailed options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.5 Detailed directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Plug-in General Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Logging Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7.1 From printf to Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.2 Log Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.3 Logging Routine Options . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.4 Advanced Logging Services . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 The Datatype library: Type Values and Datatypes . . . . . . . . . . . . . . . 67
4.8.1 Type Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.2 Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Plug-in Registration and Access . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9.1 Registration through a .mli File . . . . . . . . . . . . . . . . . . . . . 71
4.9.2 Kernel-integrated Registration and Access . . . . . . . . . . . . . . . . 72
4.9.3 Dynamic Registration and Access . . . . . . . . . . . . . . . . . . . . . 74

6



CONTENTS

4.10 Journalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.11 Project Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11.1 Overview and Key Notions . . . . . . . . . . . . . . . . . . . . . . . . 77
4.11.2 State: Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.11.3 Registering a New State . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.11.4 Direct Use of Low-level Functor State_builder.Register . . . . . . 81
4.11.5 Using Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.11.6 Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.12.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.12.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.13 Initialization Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.14 Customizing the AST creation . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.15 Customizing the machine model . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.16 Machdep record fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.17 Visitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.17.1 Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.17.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.17.3 Action Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.17.4 Visitors and Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.17.5 In-place and Copy Visitors . . . . . . . . . . . . . . . . . . . . . . . . 100
4.17.6 Differences Between the Cil and Frama-C Visitors . . . . . . . . . . . . 101
4.17.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.18 Logical Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.19 Extending ACSL annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.20 Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.20.1 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.20.2 Map Indexed by Locations . . . . . . . . . . . . . . . . . . . . . . . . 108

4.21 GUI Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.22 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.22.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.22.2 Source Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Reference Manual 113
5.1 Configure.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7



CONTENTS

5.2.2 Sections of Makefile, Makefile.generating, Makefile.config.in,
Makefile.common and Makefile.generic . . . . . . . . . . . . . . . . 116

5.2.3 Variables of Makefile.dynamic . . . . . . . . . . . . . . . . . . . . . . 119
5.2.4 .Makefile.user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.5 Makefile.dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Ptests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.1 Pre-defined macros for tests commands . . . . . . . . . . . . . . . . . 125

5.4 Profiling with Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Changes 127

Bibliography 135

List of Figures 137

Index 139

8



Foreword

This is the documentation of the Frama-C implementation1 which aims at helping developers
integrate new plug-ins inside this platform. It started as a deliverable of the task 2.3 of the
ANR RNTL project CAT2.
The content of this document corresponds to the version 23.1 (Vanadium), released on July
21, 2021, of Frama-C. However the development of Frama-C is still ongoing: features described
here may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Michele Alberti, Gergö
Barany, Patrick Baudin, Allan Blanchard, Richard Bonichon, David Bühler, Pascal Cuoq,
Zaynah Dargaye, Basile Desloges, Florent Garnier, Pierre-Loïc Garoche, Philippe Herrmann,
Boris Hollas, Nikolaï Kosmatov, Jean-Christophe Léchenet, Romain Maliach-Auguste, An-
dré Maroneze, Benjamin Monate, Yannick Moy, Anne Pacalet, Valentin Perrelle, Armand
Puccetti, Muriel Roger and Boris Yakobowski.
We also thank Johannes Kanig for his Mlpost support3, the tool formerly used for making
figures of this document.

1http://frama-c.com
2http://www.rntl.org/projet/resume2005/cat.htm
3http://mlpost.lri.fr

9

http://frama-c.com
http://www.rntl.org/projet/resume2005/cat.htm
http://mlpost.lri.fr




Chapter 1

Introduction

Frama-C (Framework for Modular Analyses of C) is a software platform which helps the
development of static analysis tools for C programs thanks to a plug-ins mechanism.
This guide aims at helping developers program within the Frama-C platform, in particular for
developing a new analysis or a new source-to-source transformation through a new plug-in.
For this purpose, it provides a step-by-step tutorial, a general presentation of the Frama-C
software architecture, a set of Frama-C-specific programming rules and an overview of the
API of the Frama-C kernel. However it does not provide a complete documentation of the
Frama-C API and, in particular, it does not describe the API of existing Frama-C plug-ins.
This API is documented in the html source code generated by make doc (see Section 4.22.1
for additional details about this documentation).
This guide introduces neither the use of Frama-C which is the purpose of the user manual [3]
and of the reference articles [7, 12], nor the use of plug-ins which are documented in separated
and dedicated manuals [2, 4, 9, 11, 19]. We assume that the reader of this guide already read
the Frama-C user manual and knows the main Frama-C concepts.
The reader of this guide may be either a Frama-C beginner who just finished reading the user
manual and wishes to develop his/her own analysis with the help of Frama-C, an intermediate-
level plug-in developer who would like to have a better understanding of one particular aspect
of the framework, or a Frama-C expert who wants to remember details about one specific point
of the Frama-C development.
Frama-C is fully developed within the OCaml programming language [13]. Motivations for this
choice are given in a Frama-C experience report [8]. However this guide does not provide any
introduction to this programming language: the World Wide Web already contains plenty of
resources for OCaml developers (see for instance https://ocaml.org/).

1.1 About this document

To ease reading, section heads may state the category of readers they are intended for and a
set of prerequisites.
Appendix A references all the changes made to this document between successive Frama-C
releases.
In the index, page numbers written in bold italics (e.g. 1 ) reference the defining sections
for the corresponding entries while other numbers (e.g. 1) are less important references.
Furthermore, the name of each OCaml value in the index corresponds to an actual Frama-C

11

https://ocaml.org/


CHAPTER 1. INTRODUCTION

value. In the Frama-C source code, the ocamldoc documentation of such a value contains
the special tag @plugin development guide while, in the html documentation of the Frama-
C API, the note “Consult the Plugin Development Guide for additional details” is
attached the value name.

The most important paragraphs are displayed inside gray boxes like this one. A plug-in
developer must follow them very carefully.

There are numerous code snippets in this document. Beware that copy/pasting them
from the PDF to your favorite text editor may prevent your code from compiling, because
the PDF text can contain non-ASCII characters.

1.2 Outline

This guide is organised in four parts.

Chapter 2 is a step-by-step tutorial for developing a new plug-in within the Frama-C plat-
form. At the end of this tutorial, a developer should be able to extend Frama-C with a
simple analysis available as a Frama-C plug-in.

Chapter 3 presents the Frama-C software architecture.

Chapter 4 details how to use all the services provided by Frama-C in order to develop a
fully integrated plug-in.

Chapter 5 is a reference manual with complete documentation for some particular points
of the Frama-C platform.

12



Chapter 2

Tutorial

Target readers: beginners.

This chapter aims at helping a developer to write his first Frama-C plug-in. At the end of the
tutorial, any developer should be able to extend Frama-C with a simple analysis available as
a Frama-C plug-in. This chapter was written as a step-by-step explanation on how to proceed
towards this goal. It will get you started, but it does not tell the whole story. You will get
it with your own experiments, and by reading the other chapters of this guide as needed.
First, Section 2.1 describes how to quickly setup a development environment for Frama-C.
Section 2.2 shows what a plug-in looks like. Then Section 2.3 explains the basis for writing a
standard Frama-C plug-in, while Section 2.4 details how to interact with Frama-C and other
plug-ins to implement analyzers of C programs.

2.1 Quick Setup of a Development Environment

This setup is based on Emacs as the IDE, with OPAM for OCaml package installation
and Merlin for OCaml source code navigation. Similar environments can be setup using
other editors, such as Vim and Sublime Text, but they are not detailed here; please refer
to the Merlin documentation for further details on how to setup other editors for OCaml
development.

2.1.1 Emacs Configuration Files

The Frama-C source distribution includes, in its share directory, some frama-c-*.el files
(Emacs-lisp scripts) with default settings for an OCaml development environment based on
Emacs + OPAM + Merlin. To set it up, do the following:

1. Install Emacs, OPAM, and OPAM packages merlin, tuareg and ocp-indent;

2. Copy share/emacs/frama-c-*.el to a directory in your Emacs load-path;

3. Add (load-library "frama-c-recommended") to your .emacs init file.

For instance, run these commands (after having installed OPAM):

13



CHAPTER 2. TUTORIAL

opam install merlin tuareg ocp-indent
mkdir ~/.emacs.d/frama-c
cp <path to frama-c sources>/share/emacs/frama-c-*.el ~/.emacs.d/frama-c/

And then add this in the beginning of your ~/.emacs:

(add-to-list 'load-path "~/.emacs.d/frama-c")
(load-library "frama-c-recommended")

You can replace frama-c-recommended with frama-c-dev in the above line. The former con-
tains some extra, optional settings, while the latter contains only the most important settings
for OCaml development. We recommend you review the definitions in frama-c-recommended
and remove those you find unnecessary.

2.1.2 Quick Merlin guide

Merlin1 is a tool for OCaml type information, source code navigation and auto-completion.
Detailed instructions for using Merlin with Emacs are available at https://github.com/
the-lambda-church/merlin/wiki/emacs-from-scratch.
The Frama-C Makefile contains a target merlin that generates an appropriate .merlin file to
be used when editing Frama-C .ml/.mli files. Run make merlin after compiling Frama-C,
and the generated .merlin file will be automatically used when opening Frama-C OCaml
sources.
Here is a quick summary of the most useful commands when editing .ml/.mli files:

• Ctrl+c Ctrl+t: display type information (repeat it to further expand types)

• Ctrl+c Ctrl+l: jump to definition (for variables, types, modules, etc.)

• Ctrl+c Ctrl+x: jump to next error in current buffer

Merlin also includes an auto-complete feature. Check its website for further documentation.

2.2 What Does a Plug-in Look Like?

Figure 2.1 shows how a plug-in can integrate with the Frama-C platform. This tutorial focuses
on specific parts of this figure.
The implementation of the plug-in is provided inside a specific directory. The plug-in registers
with the Frama-C platform through kernel-provided registration points. These registrations
are performed through hooks (by applying a function or a functor). For instance, the next
section shows how to:

• extend the Frama-C entry point thanks to the function Db.Main.extend if you want to
run plug-in specific code whenever Frama-C is executed;

• use specific plug-in services provided by the module Plugin, such as adding a new
Frama-C option.

1Merlin is available on Github (https://github.com/the-lambda-church/merlin) and as an OPAM pack-
age.

14

https://github.com/the-lambda-church/merlin/wiki/emacs-from-scratch
https://github.com/the-lambda-church/merlin/wiki/emacs-from-scratch
https://github.com/the-lambda-church/merlin


2.3. THE HELLO PLUG-IN

Register

Options

. . .

Plug-in implementation

. . .

Plug-in GUI

Makefile

Plug-in directory

Design
(GUI extension point)

registration points
Caption:

Makefile.dynamic

Db.Main

Dynamic

Plugin

Type

Journal

Project

Figure 2.1: Plug-in Integration Overview.

2.3 The Hello plug-in

This simple plug-in explain how to make your plug-in interact basically with several aspects
of the Frama-C framework: registration, getting command-line options, compilation and in-
stallation, console output, testing, and documentation. (In case of difficulty, it is explained
at the end of this section how to generate the whole plug-in.)

2.3.1 A Simple Script

The easiest way to extend Frama-C is to write a simple script. A simple ’Hello World’ script
consists of a single OCaml file:

File ./hello_world.ml2

let run () =
try

15



CHAPTER 2. TUTORIAL

let chan = open_out "hello.out" in
Printf. fprintf chan "Hello, world!\n";
flush chan;
close_out chan

with Sys_error _ as exc →
let msg = Printexc.to_string exc in
Printf. eprintf "There was an error: %s\n" msg

let () = Db.Main.extend run

This script defines a simple function that writes a message to an output file, then registers
the function run as an entry point for the script. Frama-C will call it among the other plug-in
entry points if the script is loaded.
The script is compiled, loaded and run with the command frama-c -load-script
hello_world.ml. Executing this command creates a hello.out file in the current direc-
tory.

2.3.2 Registering a Script as a Plug-in

To make this script better integrated into Frama-C, its code must register itself as a plug-in.
Such a registration provides general services, such as outputting on the Frama-C console, or
extending Frama-C with new command-line options.
Registering a plug-in is achieved through the use of the Plugin.Register functor:

File ./hello_world.ml

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

let run () =
try

let chan = open_out "hello.out" in
Printf. fprintf chan "Hello, world!\n";
flush chan;
close_out chan

with Sys_error _ as exc →
let msg = Printexc.to_string exc in
Printf. eprintf "There was an error: %s\n" msg

let () = Db.Main.extend run

The argument for this functor is a module with three values:

• name is an arbitrary, non-empty string containing the full name of the module.

• shortname is a small string containing the short name of the module, usually used as
a prefix for plug-in options. No space is allowed in that string.

16



2.3. THE HELLO PLUG-IN

• help is a string containing free-form text, containing a description of the module.

Visible results of the registration include:

• “hello world” appears in the list of available plug-ins (consultable with frama-c
-load-script hello_world.ml -plugins);

• default options for the plug-in work, including the inline help (available with frama-c
-load-script hello_world.ml -hello-help).

2.3.3 Displaying Messages

The signature of the module Self obtained by applying Plugin.Register is
General_services. One of these general services is logging, i.e. message display. In Frama-
C, one should never attempt to write messages directly to stderr or stdout: use the general
services instead3.

File ./hello_world.ml

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

let run () =
Self. result "Hello, world!";
let product =
Self.feedback ∼ level:2 "Computing the product of 11 and 5...";
11 * 5

in
Self. result "11 * 5 = %d" product

let () = Db.Main.extend run

Running this script yields the following output:

$ frama-c -load-script hello_world.ml
[hello] Hello, world!
[hello] 11 * 5 = 55

The result routine is the function to use to output results of your plug-in. The Frama-C
output routines takes the same arguments than the OCaml function Format.printf.

The function feedback outputs messages that show progress to the user. In this example,
we gave to feedback a log level of 2, because we estimated that in most case the user is not
interested in seeing the progress of a fast operation (simple multiplication). The default log
level is 1, so by default this message is not displayed. To see it, the verbosity of the hello
plug-in must be increased:

3However writing to a new file using standard OCaml primitives is OK.

17



CHAPTER 2. TUTORIAL

$ frama-c -load-script hello_world.ml -hello-verbose 2
[hello] Hello, world!
[hello] Computing the product of 11 and 5...
[hello] 11 * 5 = 55

For a comprehensive list of the logging routines and options, see Section 4.7.

2.3.4 Adding Command Line Options

We now extend the hello world plug-in with new options.
If the plug-in is installed (with make install), it will be loaded and executed on every
invocation of frama-c, which is surely not what you want. To avoid this behavior, we add a
boolean option, set by default to false, that conditionally enables the execution of the main
function of the plug-in (the usual convention for the name of the option is to take the short
name of the module with no suffix, i.e. -hello in our case).
We also add another option, -hello-output, that takes a string argument. When set, the
hello message is displayed in the file given as argument.

File ./hello_world.ml

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

module Enabled = Self.False
(struct

let option_name = "-hello"
let help = "when on (off by default), " ^ help_msg

end)

module Output_file = Self.String
(struct

let option_name = "-hello-output"
let default = "-"
let arg_name = "output-file"
let help =
"file where the message is output (default: output to the console)"

end)

let run () =
try
if Enabled.get() then
let filename = Output_file.get () in
let output msg =
if Output_file.is_default() then
Self. result "%s" msg

else
let chan = open_out filename in
Printf. fprintf chan "%s\n" msg;

18



2.3. THE HELLO PLUG-IN

flush chan;
close_out chan;

in
output "Hello, world!"

with Sys_error _ as exc →
let msg = Printexc.to_string exc in
Printf. eprintf "There was an error: %s\n" msg

let () = Db.Main.extend run

Registering these new options is done by calling the Self.False and Self.String functors,
which respectively creates a new boolean option whose default value is false and a new string
option with a user-defined default value (here "-"). The values of these options are obtained
via Enabled.get () and Output_file.get ().
With this change, the hello message is displayed only if Frama-C is executed with the -hello
option.

$ frama-c
$ frama-c -load-script hello_world.ml -hello
[hello] Hello, world!
$ frama-c -load-script hello_world.ml -hello -hello-output hello.out
$ ls hello.out
hello.out

These new options also appear in the inline help for the hello plug-in:
$ frama-c -load-script hello_world.ml -hello-help
...
***** LIST OF AVAILABLE OPTIONS:

-hello when on (off by default), output a warm welcome message
to the user (opposite option is -no-hello)

-hello-output <output-file> file where the message is output (default:
output to the console)

...

2.3.5 Writing a Makefile

The use of load-script is ideal for small experimentations, or when writing very specific
extensions. When a plug-in becomes larger, or more general-purpose, and must be split into
several files, it is a good idea to build and install it properly. Frama-C provides means to
simplify this through the use of Makefiles.
First, lets us create a hello directory that will contain all of our plug-in files. We put
hello_world.ml inside it, and then create our Makefile there.

A simple Makefile
We write a simple ./Makefile for our ./hello_world.ml plug-in:

File ./Makefile

FRAMAC_SHARE := $(shell frama-c-config -print-share-path)
PLUGIN_NAME = Hello
PLUGIN_CMO = hello_world
include $(FRAMAC_SHARE)/Makefile.dynamic

19



CHAPTER 2. TUTORIAL

This Makefile sets some variables before including the generic Makefile.dynamic which is
installed within Frama-C. It may be customized in several ways to help building a plug-in
(see Section 4.4 for details).

The name of each compilation unit (here hello_world) must be different from the plug-in
name set by the Makefile (here Hello), from any other plug-in names (e.g. valuea) and
from any other Frama-C kernel OCaml files (e.g. plug-in).

avalue is the technical plug-in name of the Eva plug-in

The plug-in also needs an interface file. Indeed, thanks to Makefile.dynamic, each plug-in
is packed into a single module $(PLUGIN_NAME) (here Hello) which needs an interface. Here
we simply export an empty interface in order to hide the whole implementation to other
developers.

File ./Hello.mli

(∗∗ Hello World plug−in.

No function is exported. ∗)

Note the unusual capitalization of the filename Hello.mli which is required for compila-
tion purposes.

Inside the plug-in’s directory, run make to compile it. Note that the compiled files are copied
into a top (for top-level) subdirectory (if our plug-in had GUI-dependent modules, they would
be placed in a gui subdirectory). The module can then be loaded and executed by using
frama-c -load-module top/Hello.
Then run make install to install the plug-in (you need to have write access to the plugins
directory, located at the path given by the command frama-c-config -print-libpath).
Just launch frama-c (without any option): the Hello plug-in is now always loaded, without
the need to pass other options to the command line. Check it with the command frama-c
-hello-help.

Splitting your source files
Here is a slightly more complex example where the plug-in has been split into several files.
Usually plug-in registration through Plugin.Register should be done at the bottom of the
module hierarchy, while registration of the run function through Db.Main.extend should be
at the top, as in the following example. The PLUGIN_CMO variable must contain the list of file
names, in the correct OCaml build order.

File ./Makefile

FRAMAC_SHARE := $(shell frama-c-config -print-share-path)
PLUGIN_NAME = Hello
PLUGIN_CMO = hello_options hello_print hello_run
include $(FRAMAC_SHARE)/Makefile.dynamic

The three following files completely replace the ./hello_world.ml from the previous section.
Modules are directly called by their name in the classical OCaml way.

File ./hello_options.ml

20



2.3. THE HELLO PLUG-IN

let help_msg = "output a warm welcome message to the user"

module Self = Plugin.Register
(struct

let name = "hello world"
let shortname = "hello"
let help = help_msg

end)

module Enabled = Self.False
(struct

let option_name = "-hello"
let help = "when on (off by default), " ^ help_msg

end)

module Output_file = Self.String
(struct

let option_name = "-hello-output"
let default = "-"
let arg_name = "output-file"
let help =
"file where the message is output (default: output to the console)"

end)

File ./hello_print.ml

let output msg =
try

let filename = Hello_options.Output_file.get () in
if Hello_options.Output_file.is_default () then
Hello_options.Self. result "%s" msg

else
let chan = open_out filename in
Printf. fprintf chan "%s\n" msg;
flush chan;
close_out chan

with Sys_error _ as exc →
let msg = Printexc.to_string exc in
Printf. eprintf "There was an error: %s\n" msg

File ./hello_run.ml

let run () =
if Hello_options.Enabled.get() then
Hello_print.output "Hello, world!"

let () = Db.Main.extend run

The plug-in can be tested again by running:
$ make
$ make install
<...>
$ frama-c -hello -hello-output hello.out
$ more hello.out
Hello, world!

21



CHAPTER 2. TUTORIAL

However, this does not consist in a proper test per se. The next section presents how to
properly test plug-ins.

2.3.6 Testing your Plug-in

Frama-C supports non-regression testing of plug-ins. This is useful to check that further
plug-in modifications do not introduce new bugs. The tool allowing to perform the tests is
called ptests .
To build these tests, the location of the subdirectories containing them must be indicated in
the Makefile through the variable PLUGIN_TESTS_DIRS set at hello as this will be the name
of the subdirectory of .tests/ where the plug-in’s tests will be located:

File ./Makefile

FRAMAC_SHARE := $(shell frama-c-config -print-share-path)
PLUGIN_NAME = Hello
PLUGIN_CMO = hello_options hello_print hello_run
PLUGIN_TESTS_DIRS := hello
include $(FRAMAC_SHARE)/Makefile.dynamic

This enables the creation of a ./tests/ptests_config file holding the environement needed
by ptests to run the plug-in’s tests by running:

$ mkdir tests
$ make
<...>
Generating tests/ptests_config

For non-regression testing, the current behaviour of a program is taken as the oracle against
which future versions will be tested. In this tutorial, the test will be about the correct Hello,
world! output made by the option -hello of the plug-in.
Each test directory must contain a run.config comment with the test directives and the
C source code used for the test. (There are other ways to declare and control tests as
developed in Section 4.5.2.) For this tutorial, there will be no such source code. A file
./tests/hello/hello_test.c is then created:

File ./tests/hello/hello_test.c

/* run.config
OPT: -hello

*/

In this file, there is only one directive OPT: -hello which requires to run Frama-C on this
test with the -hello option. A look at Section 4.5.5 gives you an idea of the kind of directives
which can be used to test plug-ins.
Once the run.config has been configured, it becomes possible to get the output generated
by the plug-in:

$ ptests .opt -show
Env:
<...>
Command:
/usr/local/bin/frama-c.byte tests/hello/hello_test.c -check -hello
2>tests/hello/result/hello_test.err.log >tests/hello/result/hello_test.res.log

22



2.3. THE HELLO PLUG-IN

[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing tests/hello/hello_test.c (with preprocessing)
[hello] Hello, world!
Env:
<...>
Command:
<...>

The option -show runs the tests and shows the output (but not their examination).
Other options are detailed in Section 4.5.4 to give a better idea of the extent to
which ptests is configurable. Under Env is displayed the context (coming from the file
./hello/ptests_config). Then, Command shows the executed command for this test case
followed by bash pipes to control the dataflow. (Note the -hello option which has been
passed to Frama-C as requested by OPT: -hello in the run.config.) Two outputs are
considered as results for each test: an error output and a result output. These outputs
are logged in the two following files: ./tests/hello/result/hello_test.err.log and
./tests/hello/result/hello_test.res.log. The three lines beginning by [kernel] and
[hello] are the actual non-erroneous outputs made by Frama-C: two of them are generated
by the kernel (which could be muted by changing the verbosity) while the third one is gen-
erated by our plug-in Hello. Env and Command parts appear once again because some test
strategies need it, which is not the case in the simple setting of this tutorial.
Once you have verified the output is as expected, set it as an oracle to be used for later
non-regression tests by running:

$ ptests .opt -update

This command copies the two log files to ./tests/hello/oracle/hello_test.err.oracle
and ./tests/hello/oracle/hello_test.res.oracle.
The setting of this test case is now finished. Let’s now assume the plug-in is later erroneously
modified as follows:

File ./hello_run.ml

let run () =
if Hello_options.Enabled.get() then
Hello_print.output "Hello world!"

let () = Db.Main.extend run

where Hello, world! is incorrectly changed to Hello world!. Running the command:
$ make
<...>
$ make tests
TESTING PLUG-IN Hello
% Dispatch finished, waiting for workers to complete
Env:
<...>
Command:
<...>
% Comparisons finished, waiting for diffs to complete
--- tests/hello/oracle/hello_test.res.oracle 2017-06-02 14:39:49.407624816 +0200
+++ tests/hello/result/hello_test.res.log 2017-06-02 14:40:03.483624679 +0200
@@ -1,3 +1,3 @@
[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)

23



CHAPTER 2. TUTORIAL

[kernel] Parsing tests/hello/hello_test.c (with preprocessing)
-[hello] Hello, world!
+[hello] Hello world!
% Diffs finished. Summary:
Run = 1
Ok = 1 of 2
Time = 0.380000 s.
real 0.45
user 0.38
sys 0.03

displays the differences (à la diff) between the current executions and the saved oracles.
Here the diff clearly shows that the only difference is the missing comma in the generated
message due to our (erroneous) modification. One test is marked as being successful: that is
the test comparing stderr (which contains an empty string). After fixing the OCaml code,
running make && make tests again shows that all test cases are successful.
You may use other Frama-C’s plug-ins as examples of how to integrate a plug-in with
ptests. Small plug-ins such as Report and Variadic are good examples (see directories
src/plugins/report/tests/ and src/plugins/variadic/tests/). Please note Frama-C
offers no particular support for other kinds of testing purposes, such as test-driven devel-
opment (TDD)4 for instance. Additional information about plug-in testing is available in
Sections 4.5 and 5.3.

2.3.7 Documenting your Source Code

Frama-C automatically generates the documentation of plug-ins when the command make
doc is run5. This relies on ocamldoc and requires the plug-in to be documented following the
ocamldoc guidelines (please refer to the corresponding chapter in [13]).
We show here how the Hello plug-in could be slightly documented and use ocamldoc features
such as @-tags and cross references:

File ./hello_options.ml

(∗∗ This module contains the possible command line options
for the Hello plug−in.
@author Anne Onymous
@see < http://frama−c.com/download/

frama−c−plugin−development−guide.pdf>
Frama−C Developer Manual, Tutorial

∗)

(∗∗ Content of the welcome message. ∗)
let help_msg = "output a warm welcome message to the user"

(∗∗ Registration of the plug−in to Frama−C. ∗)
module Self = Plugin.Register
(struct

let name = "hello world"

4For the purpose of driving the development of a plug-in, one should have to manually create
./tests/*/oracle/*.err.oracle and ./tests/*/oracle/*.res.oracle files for example.

5Frama-C kernel needs to have been installed with code documentation support. If this was not the
case, you can run make doc install-doc-code in Frama-C’s main directory as hinted by the error message
appearing in the terminal before trying again to generate the documentation of the plug-in.

24



2.3. THE HELLO PLUG-IN

let shortname = "hello"
let help = help_msg

end)

(∗∗ Enabling of the plug−in. ∗)
module Enabled = Self.False
(struct

let option_name = "-hello"
let help = "when on (off by default), " ^ help_msg

end)

(∗∗ Output of the plug−in. ∗)
module Output_file = Self.String
(struct

let option_name = "-hello-output"
let default = "-"
let arg_name = "output-file"
let help =
"file where the message is output (default: output to the console)"

end)

File ./hello_print.ml

(∗∗ This module contains the printing method of the Hello plug−in.
@author Anne Onymous
@see < http://frama−c.com/download/

frama−c−plugin−development−guide.pdf>
Frama−C Developer Manual, Tutorial

∗)

(∗∗ Outputs a message to the output selected in
{!module:Hello_options.Output_file}.

@param msg Message to output.
@raise Sys_error if filesystem error.

∗)
let output msg =
try

let filename = Hello_options.Output_file.get () in
if Hello_options.Output_file.is_default () then
Hello_options.Self. result "%s" msg

else
let chan = open_out filename in
Printf. fprintf chan "%s\n" msg;
flush chan;
close_out chan

with Sys_error _ as exc →
let msg = Printexc.to_string exc in
Printf. eprintf "There was an error: %s\n" msg

File ./hello_run.ml

(∗∗ This module contains the main control logic of the Hello plug−in.
@author Anne Onymous
@see < http://frama−c.com/download/

frama−c−plugin−development−guide.pdf>
Frama−C Developer Manual, Tutorial

25



CHAPTER 2. TUTORIAL

∗)

(∗∗ Controls the output of a given message by
{!val:Hello_print.output} depending on the state of
{!module:Hello_options.Enabled}.

∗)
let run () =
if Hello_options.Enabled.get() then
Hello_print.output "Hello, world!"

(∗∗ Definition of the entry point of the hello plug−in. ∗)
let () = Db.Main.extend run

The documentation files of the plug-in are added to ./doc/code/ and the link to this is
added to the plug-ins index file ./doc/code/index.html.

This simple tutorial now comes to its end. It focused on the standard features of architectures
and interfaces of Frama-C plug-ins. A companion archive hello.tar.gz is available in the
download section of the Frama-C website6. The next tutorial will make you dive in C analysis.

2.4 The ViewCfg plug-in

In this section, we create a new ViewCfg plug-in that computes the control flow graph of a
function and outputs it in the DOT format. Through its implementation, we explain some
of Frama-C APIs such as how to visit an AST7, to hook a plug-in, to interface a plug-in
with other plug-ins, to extend the GUI8, to make a plug-in usable by others, to make write a
plug-in into the journal, to configure a script, and to make a plug-in usable in a multi-projects
setting.

This section assumes the reader is already familiar with the basics of plug-ins for Frama-C as
covered by the Hello plug-in in the previous section.

2.4.1 Visiting the AST

Writing an analysis for C programs is the primary purpose of a Frama-C plug-in. That
usually requires to visit the AST to compute information for some C constructs. There are
two different ways of doing that in Frama-C:

• through a direct recursive descent; or

• by using the Frama-C visitor.

The first case is usually better if you have to compute information for most C constructs,
while the latter is better if only few C constructs are interesting or if you have to write a
program transformation. Of course, it is also possible to combine both ways to tune it to
specific needs.

6The direct link is: http://frama-c.com/download.html.
7Abstract Syntax Tree
8Graphical User Interface

26

http://frama-c.com/download.html


2.4. THE VIEWCFG PLUG-IN

Pretty-printing with direct recursive descent
Frama-C already has a function to pretty-print statements (namely Printer.pp_stmt), but
it is not suitable for us, as it will recursively print substatements of compound statements
(blocks, if, while, ...) while we only want to pretty print the node representing the current
statement: substatements will be represented by other nodes. Thus we will use the following
small function:

open Cil_types

let print_stmt out = function
| Instr i → Printer.pp_instr out i
| Return _ → Format.pp_print_string out "< return> "
| Goto _ → Format.pp_print_string out "< goto> "
| Break _ → Format.pp_print_string out "< break> "
| Continue _ → Format.pp_print_string out "< continue> "
| If (e,_,_,_) → Format.fprintf out "if %a" Printer.pp_exp e
| Switch(e,_,_,_) → Format.fprintf out "switch %a" Printer.pp_exp e
| Loop _ → Format.fprintf out "< loop> "
| Block _ → Format.fprintf out "< block> "
| UnspecifiedSequence _ → Format.fprintf out "< unspecified sequence> "
| TryFinally _ | TryExcept _ | TryCatch _ → Format.fprintf out "< try> "
| Throw _ → Format.fprintf out "< throw> "

The Cil_types module contains the definition of the AST of a C program, like constructors
Cil_types.Instr, Cil_types.Return, and so on which are of type Cil_types.stmtkind.
The Printer module contains functions that prints the different Cil types. The documen-
tation of these module is available on the Frama-C website9, or by typing make doc in the
Frama-C source distribution.

Creating the graphs with a visitor
In order to create our output, we must make a pass through the whole AST. An easy way to
do that is to use Frama-C visitor mechanism. A visitor is a class with one method per type
of the AST, whose default behavior is to just call the method corresponding to each of its
children. By inheriting from the visitor, and redefining some of the methods, one can perform
actions on selected parts of the AST, without the need to traverse the AST explicitly.

class print_cfg out = object
inherit Visitor.frama_c_inplace

Here we used the so-called “in place” visitor, which should be used for read-only access to the
AST. When performing code transformations, a “copy” visitor should be used, that creates
a new project (see section 4.17.4).
There are three kinds of nodes where we have something to do. First, at the file level, we
create the whole graph structure.

method! vfile _ =
Format.fprintf out "@[< hov 2> digraph cfg {@ ";
Cil.DoChildrenPost (fun f → Format.fprintf out "}@]@."; f)

Cil.DoChildrenPost is one of the possible visitAction, that tells the visitor what to do
after the function is executed. With DoChildrenPost func, the func argument is called

9From http://frama-c.com/download.html.

27

http://frama-c.com/download.html


CHAPTER 2. TUTORIAL

once the children have been executed: here we close the parenthesis once that all functions
have been printed in the file.
Then, for each function, we encapsulate the CFG in a subgraph, and do nothing for the other
globals.

method! vglob_aux g =
match g with
| GFun(f,_) →

Format.fprintf out "@[< hov 2> subgraph cluster_%a {@ \
@[< hv 2> graph@ [label=\"%a\"];@]@ "

Printer.pp_varinfo f.svar
Printer.pp_varinfo f.svar;

Cil.DoChildrenPost(fun g → Format.fprintf out "}@]@ "; g)
| _ → Cil.SkipChildren

Cil.SkipChildren tells the visitor not to visit the children nodes, which makes it more
efficient10.
Last, for each statement, we create a node in the graph, and create the edges toward its
successors:

method! vstmt_aux s =
Format.fprintf out "@[< hov 2> s%d@ [label=%S]@];@ "
s.sid (Pretty_utils.to_string print_stmt s.skind);

List. iter
(fun succ → Format.fprintf out "@[s%d → s%d;@]@ " s.sid succ.sid)
s.succs;

Format.fprintf out "@]";
Cil.DoChildren

This code could be optimized, for instance by replacing the final DoChildren by
SkipChildren for statements that cannot contain other statements, like Instr, and avoid
visiting the expressions.
Finally we close the object definition:

end

Hooking into Frama-C
It just remains to hook this script into Frama-C.

let run () =
let chan = open_out "cfg.out" in
let fmt = Format.formatter_of_out_channel chan in
Visitor .visitFramacFileSameGlobals (new print_cfg fmt) (Ast.get ());
close_out chan

let () = Db.Main.extend run

Assuming the script is called cfg_print.ml, it can then be run with:
frama-c -load-script cfg_print.ml [other_options] file.c [file2.c]

And the graph can be visualized with
dotty cfg.out

This produces a graph like in Figure 2.2
10In a copying visitor, Cil.JustCopy should have been used instead.

28



2.4. THE VIEWCFG PLUG-IN

File test.c

void f( int g)
{
g++;
g--;

}

int main(int argc, char **argv)
{

int i = 3;

if ( i > 0)
{

while(--i);
}

else
{

f(3);
}

return 0;
}

f main

g ++;

g --;

<return>

i = 3;

if i > 0

<loop>

f(3);i --;

__retres = 0;

if i

<break>

<return>

Figure 2.2: Control flow graph for file test.c.

Further improvements
There are many possible enhancements to this code:

• There is a bug when trying to print statements that contain strings (such as
printf("Hello\n") such statements must be protected using the "%S" Format di-
rective;

• The script could be transformed into a regular plug-in, by registering into Frama-C, and
taking options from the command line; for instance to compute the control flow graph
of a single function given as an argument;

• The graphs could be fancier, in particular by distinguishing between branching nodes
and plain ones, or showing exit of blocks as well as their beginning; or linking a call
with the called function.

We will concentrate on another extension, which is to reuse the analysis of the value Frama-
C plug-in to color unreachable nodes. To do so, because we will combine different plug-ins,
we need to ensure their correct ordering. This requires the definition of some command-line
options.

2.4.2 Plug-In registration and command-line options

We have already seen how to register options in the previous “Hello” tutorial. We now apply
these principles to the ViewCfg plug-in.

29



CHAPTER 2. TUTORIAL

module Self = Plugin.Register(struct
let name = "control flow graph"
let shortname = "viewcfg"
let help = "control flow graph computation and display"

end)

module Enabled = Self.False(struct
let option_name = "-cfg"
let help =
"when on (off by default), computes the CFG of all functions."

end)

module OutputFile = Self.String(struct
let option_name = "-cfg-output"
let default = "cfg.dot"
let arg_name = "output-file"
let help = "file where the graph is output, in dot format."

end)

let run () =
if Enabled.get() then
let filename = OutputFile.get () in
let chan = open_out filename in
let fmt = Format.formatter_of_out_channel chan in
Visitor .visitFramacFileSameGlobals (new print_cfg fmt) (Ast.get ());
close_out chan

let () = Db.Main.extend run

We added two options, -cfg to compute the CFG conditionally (important for ordering
plug-in executions), and -cfg-output to choose the output file.

An interesting addition would be a -cfg-target option, which would take a set of files or
functions whose CFG would be computed, using the Self.Kernel_function_set functor.
Depending on the targets, visiting the AST would have different starting points. This is left
as an exercise for the reader.

Another interesting exercise is to solve the following problem. Currently, the complete CFG
for the whole application is computed in each Frama-C step, i.e. executing frama-c test.c
-cfg -then -report would compute the CFG twice. Indeed, the -cfg option sets Enabled
to true, and the run function is executed once per task. To solve this problem, one has
to create a boolean state to remember that the plug-in has already been executed. The
apply_once function in the State_builder module helps dealing with this issue (reading
the section 2.4.9 of this tutorial and section 4.11 of this manual should help you understand
the underlying notion of states).

With these command-line options, we can properly interface our ViewCfg plug-in with the
value plug-in.

2.4.3 Interfacing with a kernel-integrated plug-in

Kernel-integrated plug-ins, such as value, use a special mechanism to statically register their
APIs for other plug-ins that wish to access them. This mechanism is the Db module of the
Frama-C kernel, the entry point for all kernel-integrated plug-ins. By using the functions

30



2.4. THE VIEWCFG PLUG-IN

exported through the Db.Value module, our plug-in will obtain reachability information
computed by value.
The code modification we propose is to color in pink the nodes guaranteed to be unreachable
by the value analysis. For this purpose, we change the vstmt_aux method in the visitor:

method! vstmt_aux s =
let color =
if Db.Value.is_computed () then
let state = Db.Value.get_stmt_state s in
let reachable = Db.Value.is_reachable state in
if reachable then "fillcolor=\"#ccffcc\" style=filled"
else "fillcolor=pink style=filled"

else ""
in
Format.fprintf out "@[s%d@ [label=%S %s]@];@ "
s.sid (Pretty_utils.to_string print_stmt s.skind) color;

List. iter
(fun succ → Format.fprintf out "@[s%d → s%d;@]@ " s.sid succ.sid)
s.succs;

Cil.DoChildren

This code fills the nodes with green if the node may be reachable, and in pink if the node is
guaranteed not to be reachable; but only if the value analysis was previously computed.
To test this code, frama-c should be launched with:

frama-c test.c -load-script cfg_print.ml -val -then -cfg && dotty cfg.out

Note that the relative order of the parameters -load-script and -val in this example is
not relevant (see Section 4.13 for details). However, it is important to ensure that -cfg is
separated from -val by a -then; otherwise, it is not guaranteed that the value plug-in will
run before the ViewCfg plug-in, which might lead to a non-colored graph in some cases, and
colored in others.
The resulting graph is shown in Figure 2.3.

2.4.4 Extending the Frama-C GUI

In this section, we will extend our plug-in so that the control flow graph can be displayed
interactively. For that, we will extend the Frama-C GUI so that when you right-click on a
function in the code, a new “Show CFG” item appears, that displays the control flow graph
of the function in a dialog box. This is achieved just by appending the following pieces of
code at the end of the cfg_print.ml file.
Currently, we used a visitor that outputs a DOT file with the CFG of all functions of all files.
We use dump_function to output the CFG of a single function instead.

let dump_function fundec fmt =
Format.fprintf fmt "@[< hov 2> digraph cfg {@ ";
ignore(Visitor.visitFramacFunction (new print_cfg fmt) fundec);
Format.fprintf fmt "}@]@\n"

We reused the print_cfg visitor, but we selected a different starting point. The argument
fundec gets type Cil_types.fundec, which is the CIL type representing a function definition.
Now we write the GUI extension code:

31



CHAPTER 2. TUTORIAL

File test.c

void f( int g)
{
g++;
g--;

}

int main(int argc, char **argv)
{

int i = 3;

if ( i > 0)
{

while(--i);
}

else
{

f(3);
}

return 0;
}

f main

g ++;

g --;

<return>

i = 3;

if i > 0

<loop>

f(3);i --;

__retres = 0;

if i

<break>

<return>

Figure 2.3: Control flow graph colored with reachability information.

let cfg_selector
(popup_factory:GMenu.menu GMenu.factory) main_ui ∼button:_ localizable =

match localizable with
(∗ Matches global declarations that are functions. ∗)
| Pretty_source.PVDecl(_, _, ({vtype = TFun(_,_,_,_)} as vi)) →

let callback () =
let kf = Globals.Functions.get vi in
let fundec = Kernel_function.get_definition kf in
let window:GWindow.window = main_ui#main_window in
Dgraph_helper.graph_window_through_dot

∼parent:window ∼title:"Control flow graph"
(dump_function fundec)

in
ignore (popup_factory#add_item "Show _CFG" ∼callback)

| _ → ()

let main_gui main_ui = main_ui#register_source_selector cfg_selector

let () = Design.register_extension main_gui

Let us explain this code from the end. Design.register_extension is the entry point for
extending the GUI. Its argument is a function which takes as argument an object correspond-
ing to the main window of the Frama-C GUI. This object provides access to the main widgets
of the window, and several extension points.

Here we have implemented a single extension, the “source selector”, that allows to add
entries to menu obtained when right-clicking on the source. This is implemented by the
cfg_selector function.

32



2.4. THE VIEWCFG PLUG-IN

This function takes a localizable argument, which gives information on where the user
clicks on the source. Here we do something only if the user clicks on the declaration of
a variable whose type is a function (i.e. when the user clicked on a function declaration
or definition). In that case, we add an item to the popup menu, that calls the callback
function if clicked. The callback function calls a Frama-C GUI function that displays a
graph from DOT printing functions. It uses several important Frama-C APIs: Globals and
Kernel_function, which contain several functions for manipulating globals and functions.
Note that this GUI extension could also have been done through a script (instead of a plug-in),
but it would have been less than ideal. In particular, the GUI OCaml modules are available
only when a script is loaded with frama-c-gui, and not when loaded with frama-c. When
the user wants to view the CFG from the GUI, outputting the CFG of all functions in cfg.out
is useless. A better architectural solution is to split our plug-in in several files, with its own
Makefile, to better manage its functionalities.

2.4.5 Splitting files and writing a Makefile

The Frama-C plug-in development environment allows to split GUI-related and non-GUI
related modules, so that GUI-related modules are loaded and run only if Frama-C is executed
with frama-c-gui. This requires splitting the module into several files. We choose the
following architecture:

• cfg_options.ml implements plug-in registration and configuration options;

• cfg_core.ml implements the main functions for computing the CFG;

• cfg_register.ml implements “global” computation of the CFG using the -cfg option,
and hooking into the Frama-C main loop;

• cfg_gui.ml implements GUI registration.

Dependencies between the modules11 is presented on Figure 2.4.

Cfg_options

Cfg_core

Cfg_register Cfg_gui

Figure 2.4: CFG plug-in architecture

To break recursive dependencies between OCamlmodules, it is typical that plug-in registration
is done at the bottom of the module hierarchy, while definition of the run function is at the

11This graphic is generated in file doc/code/modules.dot after running make doc.

33



CHAPTER 2. TUTORIAL

top. The GUI is also at the top of the hierarchy: the Frama-C Makefile requires that normal
plug-in modules do not depend on GUI modules. Note that currently, the dependency from
Cfg_core and Cfg_gui to Cfg_register is artificial, but in future evolutions the GUI could
depend on configuration options.

File Makefile

FRAMAC_SHARE := $(shell frama-c-config -print-share-path)
PLUGIN_NAME = ViewCfg
PLUGIN_CMO = cfg_options cfg_core cfg_register
PLUGIN_GUI_CMO = cfg_gui
include $(FRAMAC_SHARE)/Makefile.dynamic

In the Makefile, the PLUGIN_CMO variable must contain the list of file names of the ml files,
in the correct OCaml build order. Modules in PLUGIN_CMO must not depend on modules in
PLUGIN_GUI_CMO.

We also need to add an interface for the whole plug-in: File ViewCfg.mli

(∗∗ ViewCfg plug−in.

No function is exported. ∗)

Here is the listing for the different modules:

File cfg_options.ml

module Self = Plugin.Register(struct
let name = "control flow graph"
let shortname = "viewcfg"
let help = "control flow graph computation and display"

end)

module Enabled = Self.False(struct
let option_name = "-cfg"
let help =
"when on (off by default), computes the CFG of all functions."

end)

module OutputFile = Self.String(struct
let option_name = "-cfg-output"
let default = "cfg.dot"
let arg_name = "output-file"
let help = "file where the graph is output, in dot format."

end)

File cfg_core.ml

module Options = Cfg_options
open Cil_types

let print_stmt out = function
| Instr i → Printer.pp_instr out i
| Return _ → Format.pp_print_string out "< return> "
| Goto _ → Format.pp_print_string out "< goto> "
| Break _ → Format.pp_print_string out "< break> "
| Continue _ → Format.pp_print_string out "< continue> "

34



2.4. THE VIEWCFG PLUG-IN

| If (e,_,_,_) → Format.fprintf out "if %a" Printer.pp_exp e
| Switch(e,_,_,_) → Format.fprintf out "switch %a" Printer.pp_exp e
| Loop _ → Format.fprintf out "< loop> "
| Block _ → Format.fprintf out "< block> "
| UnspecifiedSequence _ → Format.fprintf out "< unspecified sequence> "
| TryFinally _ | TryExcept _ | TryCatch _ → Format.fprintf out "< try> "
| Throw _ → Format.fprintf out "< throw> "

class print_cfg out = object
inherit Visitor.frama_c_inplace

method! vfile _ =
Format.fprintf out "@[< hov 2> digraph cfg {@ ";
Cil.DoChildrenPost (fun f → Format.fprintf out "}@]@."; f)

method! vglob_aux g =
match g with
| GFun(f,_) →

Format.fprintf out "@[< hov 2> subgraph cluster_%a {@ \
@[< hv 2> graph@ [label=\"%a\"];@]@ "

Printer.pp_varinfo f.svar
Printer.pp_varinfo f.svar;

Cil.DoChildrenPost(fun g → Format.fprintf out "}@]@ "; g)
| _ → Cil.SkipChildren

method! vstmt_aux s =
let color =
if Db.Value.is_computed () then
let state = Db.Value.get_stmt_state s in
let reachable = Db.Value.is_reachable state in
if reachable then "fillcolor=\"#ccffcc\" style=filled"
else "fillcolor=pink style=filled"

else ""
in
Format.fprintf out "@[s%d@ [label=%S %s]@];@ "
s.sid (Pretty_utils.to_string print_stmt s.skind) color;

List. iter
(fun succ → Format.fprintf out "@[s%d → s%d;@]@ " s.sid succ.sid)
s.succs;

Cil.DoChildren

end

let dump_function fundec fmt =
Format.fprintf fmt "@[< hov 2> digraph cfg {@ ";
ignore(Visitor.visitFramacFunction (new print_cfg fmt) fundec);
Format.fprintf fmt "}@]@\n"

File cfg_register.ml

open Cfg_options
open Cfg_core

let run () =

35



CHAPTER 2. TUTORIAL

if Enabled.get() then
let filename = OutputFile.get () in
let chan = open_out filename in
let fmt = Format.formatter_of_out_channel chan in
Visitor .visitFramacFileSameGlobals (new print_cfg fmt) (Ast.get ());
close_out chan

let () = Db.Main.extend run

File cfg_gui.ml

open Cil_types
open Cfg_core
module Options = Cfg_options

let cfg_selector
(popup_factory:GMenu.menu GMenu.factory) main_ui ∼button:_ localizable =

match localizable with
(∗ Matches global declarations that are functions. ∗)
| Pretty_source.PVDecl(_, _, ({vtype = TFun(_,_,_,_)} as vi)) →

let callback () =
let kf = Globals.Functions.get vi in
let fundec = Kernel_function.get_definition kf in
let window:GWindow.window = main_ui#main_window in
Dgraph_helper.graph_window_through_dot

∼parent:window ∼title:"Control flow graph"
(dump_function fundec)

in
ignore (popup_factory#add_item "Show _CFG" ∼callback)

| _ → ()

let main_gui main_ui = main_ui#register_source_selector cfg_selector

let () = Design.register_extension main_gui

2.4.6 Getting your Plug-in Usable by Others

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2.4.7 Writing your Plug-in into the Journal

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

2.4.8 Writing a Configure Script

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

36

http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com


2.4. THE VIEWCFG PLUG-IN

2.4.9 Getting your plug-in Usable in a Multi Projects Setting

Registering and using state
In this section, we will learn how to register state into Frama-C. A state is a piece of infor-
mation kept by a plug-in. For instance, the value plug-in computes, for each statement, a
table associating to each AST’s variable a set of values the program may have at runtime:
this association table is a state.
State registration provides several features:

• It allows the state to be saved and reloaded with the rest of the session, for instance
when using frama-c -save/frama-c -load;

• It helps maintaining consistency between the AST and the results and parameters of
the analysis of the different plug-ins.

In this tutorial, we will store the file representing the DOT output of the control flow graph
of a function (as needed by dump_function) as a string, by using a hashtable from fundec
to string. Storing this string will allow us to memoize [15] our computation: the string is
computed the first time the CFG of a function is displayed, while the following requests will
reuse the result of the computation. Registering the hashtable as a Frama-C state ismandatory
to ensure Frama-C consistency: for instance, by using a standard OCaml hashtable, a user
that would have loaded several session through the GUI could observe the CFG of function
of a previous session instead of the one he wants to observe.
Registering a state is done by a functor application:

module Cfg_graph_state = State_builder.Hashtbl
(Cil_datatype.Fundec.Hashtbl)
(Datatype.String)
(struct

let name = "Data_for_cfg.Cfg_graph_state"
let dependencies = [ Ast.self; Db.Value.self ]
let size = 17

end);;

The State_builder module provides several functors that help registering states.
State_builder.Hashtbl allows the developer to create a hashtable. It is parameterized
by a module describing the hashtable and its key, a module describing the data associated to
keys, and other informations.
The Datatype and Cil_datatype modules describe the hashtable and its associated data,
and explain for instance how the datatype should be copied, printed, or marshalled to the
disk. They are part of the Type library [18], described in Section 4.8. Datatype provides de-
scriptions for standard OCaml types, and Cil_datatype for the CIL types (in the Cil_types
module).
The last module argument describes the initial size of the hashtable, a name (mainly used
for internal debugging), and a list of dependencies. Here we expressed that our hashtable
depends on the Ast and the results of the Value plug-in. For instance, whenever the Frama-C
kernel updates one of these states, it will automatically reset our hashtable. This ensures
consistency of the analysis: if the Ast of a function changes, or the value analysis is executed
with a different entry point, this potentially affects the display of the control flow graph, that
we must recompute.
Once the module has been declared, it is fairly easy to use it.

37



CHAPTER 2. TUTORIAL

let dump_to_string fundec =
Self.feedback "Computing CFG for function %s" (fundec.svar.vorig_name);
ignore
(Visitor.visitFramacFunction (new print_cfg Format.str_formatter) fundec);

Format.flush_str_formatter ()

let dump_to_string_memoized = Cfg_graph_state.memo dump_to_string

let dump_function fundec fmt =
Format.fprintf fmt "@[digraph cfg {%s}@]@\n"
(dump_to_string_memoized fundec)

dump_function now takes two steps: first the CFG is printed to a string, then the string
is printed to the fmt argument. This allows the dump_to_string part to be memoized, i.e.
the results of dump_to_string are saved so that later calls to dump_function with the same
fundec argument reuse that result.

If you launch frama-c-gui with the above code, click on functions to view their CFG, and
inspect the console, you will observe that the string “Computing CFG for function ...” is
displayed only once per function.

One can see the effects of the dependency on the Value plug-in by first launching the value
analysis, inspecting the CFG for the f function, then changing the entry point to f in the CFG
and re-running the value analysis. The console indicates that the CFG have been recomputed.
Indeed the state of the Value plug-in, and of its dependencies, was reset when the entry point
was changed.

Another way to observe how Frama-C automatically handles states is to display a CFG, save
the session, close and restart Frama-C, and then reload the session: the control flow graph is
not recomputed, which means that Frama-C has automatically saved the Cfg_graph_state
with the rest of the session. Everything should also work properly when loading several
sessions.

Clearing states, selection and projects
There is one caveat though: if the user computes the CFG before running the Value analysis,
and then runs Value, he will not see a colored graph (unless he re-launch the Value analysis
with different parameters). This is because the state of the CFG is reset when the state of
Value is reset, not when it is first computed.

To solve this problem, we will manually reset the Cfg_graph_state if we detect that the
Value analysis has been run since the last time we computed the CFG. For that, we have to
remember the previous value of Db.Value.is_computed (), i.e. to register another state:

module Value_is_computed = State_builder.Ref
(Datatype.Bool)
(struct

let name = "Data_for_cfg.Value_computed"
let dependencies = []
let default () = false

end);;

This new state only consists of a reference to a boolean value.

Then we just replace dump_function in the code above by the following.

38



2.4. THE VIEWCFG PLUG-IN

let dump_function fundec fmt =
if not (Value_is_computed.get ()) && Db.Value.is_computed () then begin
Value_is_computed.set true;
let selection = State_selection.with_dependencies Cfg_graph_state.self in
Project.clear ∼ selection ();

end;
Format.fprintf fmt "@[digraph cfg {%s}@]@." (dump_to_string_memoized fundec)

The only part that need to be explained is the notion of selection and project. A selection is
just a set of states; here we selected the state Cfg_graph_state with all its dependencies, as
resetting this state would also impact states that would depend on it (even if there is none
for now). We use Project.clear to reset the selection.

Project explanation
A project [17] is a consistent version of all the states of Frama-C. Frama-C is multi-AST,
i.e.Frama-C plug-ins can change the AST of the program, or perform incompatible analysis
(e.g. with different entry points). Projects consistently groups a version of the AST of the
program, with the states related to this AST.
The Project.clear function has type :

val clear: ? selection :State_selection.t → ?project:t → unit → unit

The arguments selection and project can be seen as a coordinate system, and the function
allows to clear specific versions of specific states. By default, Frama-C functions act on the
current project. The developer has to use Project.on or optional arguments to act on
different projects. Frama-C automatically handles duplication and switch of states when
duplicating or changing of projects. This is the last benefit of state registration.
To summarize:

• To store results, plug-ins should register states;

• A project is a consistent version of all the states in Frama-C, together with a version of
the AST;

• A session is a set of projects;

• Frama-C transparently handles the versioning of states when changing or duplicating
projects, saving and reloading sessions from disk, etc.

• The version of the state in a project can change; by default Frama-C functions operate
on the current project.

• A selection is a set of states. Dependencies allow to create selections.

• As a plug-in developer, you have to remember that is up to you to preserve consistency
between your states and their dependencies by clearing the latter when the former is
modified in an incompatible way. For instance, it would have been incorrect to not call
State_selection.with_dependencies in the last code snippet of this tutorial.

Projects are generally created using copy visitors. We encourage the reader to experiment
with multiple projects development by using them. An interesting exercise would be to change
the AST so that execution of each instruction is logged to a file, and then re-read that file

39



CHAPTER 2. TUTORIAL

to print in the CFG how much time each instruction has been executed. Another interesting
exercise would be to use the apply_once function so that the ViewCfg plug-in is executed
only once, as explained in section 2.4.2 of this tutorial.

40



Chapter 3

Software Architecture

Target readers: beginners.

In this chapter, we present the software architecture of Frama-C. First, Section 3.1 presents
its general overview. Then, we focus on four different parts:

• Section 3.2 explains what a plug-in really is and the main mechanisms of plug-in inte-
gration.

• Section 3.3 introduces the libraries that Frama-C provides.

• Section 3.4 introduces the kernel services that plug-in developers might want to use.

• Section 3.5 introduces the kernel internals. You can safely skip it if you are not a
Frama-C kernel developer.

3.1 General Description

From a plug-in developer point of view, the main goals of the Frama-C platform is to provide
services to ease:

• analysis and source-to-source transformation of big-size C programs;

• addition of new plug-ins; and

• plug-ins collaboration.

In order to reach these goals, Frama-C has a plug-ins based software architecture based on a
kernel. Historically the kernel was itself based on Cil [16]: even if they have evolved separately
since the Frama-C Hydrogen age, there are still a lot of similarities between Cil and several
modules of the Frama-C kernel (e.g. the ASTs).
The Frama-C architecture design is presented in this chapter, and summarized in Figure 3.1.
In this figure, each of the four rounded colored boxes represents a subdirectory d of directory
src, while each of the small square boxes represents a subdirectory in one subdirectory
src/d. The remaining sections will explain the goal of each of these boxes. They do not
detail each module of each directory: use the API documentation generated by make doc for
that purpose.

41



CHAPTER 3. SOFTWARE ARCHITECTURE

parsing typing runtime

Kernel Internals

visitor

analysis ast_transformations

AST Traversal

abstract_interp

AI

ast_data

ast_queries

parsetree

ASTs

cmdline_parameters

plugin_entry_points

Plug-in Interactions

Kernel Services

stdlib

datatype project

utils

Libraries

plug-in 1 plug-in 2 ... plug-in n

Plug-ins

Figure 3.1: Frama-C Architecture Design.

42



3.2. PLUG-INS

3.2 Plug-ins

In Frama-C, plug-ins are program analysis or source-to-source transformations. The ones
provided within Frama-C are in directory src/plugins/plugin_name. Each plug-in is an
extension point of Frama-C which has to be registered through Plugin.Register (see Sec-
tion 4.6). Frama-C allows plug-in collaborations: a plug-in p can use a list of plug-ins p1, . . . ,
pn and conversely. Mutual dependences between plug-ins are even possible. If a plug-in is
designed to be used by another plug-in, it has to register its API either by providing a .mli
file, or through modules Dynamic or Db. The first method is the preferred one, the second
one (through module Dynamic) is the only possible one to define mutually dependent plug-ins
while the third one (through module Db) is now fully deprecated even if most of the older
Frama-C plug-ins are still defined this way.

3.3 Libraries

Libraries are defined in the directory src/libraries. They are either third-party libraries
or dedicated independent libraries which may be used by other parts of Frama-C.
Extension of the OCaml standard library are provided in directory src/libraries/stdlib.
For instance, modules FCmodule_name (e.g. FCHashtbl) provides a module_name-like in-
terface (e.g. Hashtbl) with an uniform API for all OCaml versions supported by Frama-C
and possibly additional useful operations for the corresponding datastructures.
Single-file libraries are provided in directory src/libraries/utils. For instance,
Pretty_utils provides pretty-printing facilities.
datatype (directory src/libraries/datatype) and project (directory
src/libraries/project) are two multiple-files libraries. They are respectively pre-
sented in Sections 4.8 and 4.11.

3.4 Kernel Services

The kernel services is defined in directory src/kernel_services. It is the part of the Frama-
C kernel which may be useful to develop plug-ins.
This services may be split in four main parts:

• two ASTs and the data structures directly built upon them;

• plug-in interactions toolbox;

• predefined generic analyzers;

• the abstract interpretation framework.

The standard AST used by most analyzers is defined in module Cil_types of direc-
tory src/kernel_services/ast_data. It contains the types which describes both the
C constructs and the ACSL ones [1]. The same directory also contains modules defin-
ing datastructures directly based upon the AST (module Globals), functions (module
Kernel_function), annotations (module Annotations) and so on. A related directory is

43



CHAPTER 3. SOFTWARE ARCHITECTURE

src/kernel_services/ast_queries. It contains modules which provides specific operations
in order to get information about AST-related values.
In the same way, an untyped AST quite close of the C input source is defined in module Cabs
of directory src/kernel_services/parsetree. This AST is only well suited for syntactic
analyzers/program transformers.
Frama-C also provides services to plug-ins which help both their integration in the plat-
form and their interactions with the kernel and the other plug-ins. They enforce
some platform-wide consistency by ensuring that some common actions (e.g. print-
ing messages to end-users) are handled by all plugins in a similar way. Directory
src/kernel_services/cmdline_parameters provides modules which eases the definition of
analyzers’ parameters accessible by the end-user through command-line options. Similarly,
directory src/kernel_services/plugin_entry_points provides modules to interact with
the Frama-C kernel or other plug-ins.
Next, Frama-C provides predefined ways to visit the ASTs, in particular through
object-oriented visitors defined in directory src/kernel_services/visitors (see Sec-
tion 4.17). Some predefined analyzers, such as a multiple generic dataflow anal-
ysis are provided in directory src/kernel_services/analysis, while some prede-
fined program transformation, such as cloning a function, are provided in directory
src/kernel_services/ast_transformations. Finally, Frama-C provides an abstract in-
terpretation toolbox with various lattices in directory abstract_interp.

3.5 Kernel Internals

Target readers: kernel developers.

The kernel internals is defined in directory src/kernel_internals. It is part of the Frama-C
kernel which should be useless to develop analysis plug-ins, except possibly for very low-level
interactions, or to extend the C or ACSL services of Frama-C. Consequently, if you are not
a kernel developer, you can safely ignore this section.
The internals is split in three different parts, each of them being an independent subdirectory:

• the directory src/kernel_internals/parsing contains the lexer and parser which
generate the untyped AST (aka Cabs) from the C input source code;

• the directory src/kernel_internals/typing contains the compiler which generates
the standard AST (aka Cil) from the untyped one;

• the directory src/kernel_internals/runtime contains modules whose primary pur-
pose is to perform side-effects while Frama-C is booting.

44



Chapter 4

Advanced Plug-in Development

This chapter details how to use services provided by Frama-C in order to be fully operational
with the development of plug-ins. Each section describes technical points a developer should
be aware of. Otherwise, one could find oneself in one or more of the following situations 1

(from bad to worse):

1. reinventing the (Frama-C) wheel;

2. being unable to do some specific things (e.g. saving results of an analysis on disk, see
Section 4.11.2);

3. introducing bugs in his/her code;

4. introducing bugs in other plug-ins using his/her code;

5. breaking the kernel consistency and so potentially breaking all Frama-C plug-ins (e.g.
if s/he modifies the AST without changing project, see Section 4.11.5).

In this chapter, we suppose that the reader is able to write a minimal plug-in like hello de-
scribed in chapter 2 and knows about the software architecture of Frama-C (chapter 3). More-
over plug-in development requires the use of advanced features of OCaml (module system,
classes and objects, etc). Static plug-in development requires some knowledge of autoconf
and make. Each section summarizes its own prerequisites at its beginning (if any).

Note that the following subsections can be read in no particular order: their contents are
indeed quite independent from one another even if there are references from one chapter to
another one. Pointers to reference manuals (Chapter 5) are also provided for readers who
want full details about specific parts.

4.1 Frama-C Configure.in

Target readers: not for standard plug-ins developers.

Prerequisite: Knowledge of autoconf and shell programming.
1It is fortunately quite difficult (but not impossible) to fall into the worst situation by mistake if you are

not a kernel developer.

45



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

In this Section, we detail how to modify the file configure.in in order to configure plug-ins
(Frama-C configuration has been introduced in Section 2.4.8 and 2.4.5).

First Section 4.1.1 introduces the general principle and organisation of configure.in. Then
Section 4.1.2 explains how to configure a new simple plug-in without any dependency. Next
we show how to exhibit dependencies with external libraries and tools (Section 4.1.4) and
with other plug-ins (Section 4.1.5). Finally Section 4.1.3 presents the configuration of external
libraries and tools needed by a new plug-in but not used anywhere else in Frama-C.

4.1.1 Principle

When you execute autoconf, file configure.in is used to generate the configure script.
Each Frama-C user executes this script to check his/her system and determine the most ap-
propriate configuration: at the end of this configuration (if successful), the script summarizes
the status of each plug-in, which can be:

• available (everything is fine with this plug-in);

• partially available: either an optional dependency of the plug-in is not fully available,
or a mandatory dependency of the plug-in is only partially available; or

• not available: either the plug-in itself is not provided by default, or a mandatory de-
pendency of the plug-in is not available.

The important notion in the above definitions is dependency. A dependency of a plug-in
p is either an external library/tool or another Frama-C plug-in. It is either mandatory or
optional. A mandatory dependency must be present in order to build p, whereas an optional
dependency provides features to p that are additional but not highly required (especially p
must be compilable without any optional dependency).

Hence, for the plug-in developer, the main role of configure.in is to define the optional
and mandatory dependencies of each plug-in. Another standard job of configure.in is
the addition of options –-enable-p and –-disable-p to configure for a plug-in p. These
options respectively forces p to be available and disables p (its status is automatically “not
available”).

Indeed configure.in is organised in different sections specialized in different configuration
checks. Each of them begins with a title delimited by comments and it is highlighted when
configure is executed. These sections are described in Section 5.1. Now we focus on the
modifications to perform in order to integrate a new plug-in in Frama-C.

4.1.2 Addition of a Simple Plug-in

In order to add a new plug-in, you have to add a new subsection for the new plug-in to Section
Plug-in wished. This action is usually very easy to perform by copying/pasting from another
existing plug-in (e.g. occurrence) and by replacing the plug-in name (here occurrence) by
the new plug-in name in the pasted part. In these sections, plug-ins are sorted according to
a lexicographic ordering.

For instance, SectionWished Plug-in introduces a new sub-section for the plug-in occurrence
in the following way.

46



4.1. FRAMA-C CONFIGURE.IN

# occurrence
############
check_plugin(occurrence,src/plugins/occurrence,

[support for occurrence analysis],yes)

• The first argument is the plug-in name,

• the second one is the name of directory containing the source files of the plug-in (usually
a sub-directory of src/plugins),

• the third one is an help message for the –enable-occurrence option of configure,

• the last one indicates if the plug-in is enabled by default (yes/no).

The plug-in name must contain only alphanumeric characters and underscores. It must
be the same as the name value given as argument to the functor Plugin.Register of
section 4.6 (with spaces replaced by underscore). It must also be the same (modulo
upper/lower case) as the PLUGIN_NAME variable given in the plugin’s Makefile presented
in section 4.4.

The macro check_plugin sets the following variables: FORCE_OCCURRENCE,
REQUIRE_OCCURRENCE, USE_OCCURRENCE, and ENABLE_OCCURRENCE.

The first variable indicates if the user explicitly requires the availability of occurrence via
setting the option –-enable-occurrence. The second and third variables are used by oth-
ers plug-ins in order to handle their dependencies (see Section 4.1.5). The fourth variable
ENABLE_OCCURRENCE indicates the plug-in status (available, partially available or not avail-
able). If –-enable-occurrence is set, then ENABLE_OCCURRENCE is yes (plug-in available);
if –-disable-occurrence is set, then its value is no (plug-in not available). If no option is
specified on the command line of configure, its value is set to the default one (according to
the value of the fourth argument of check_plugin).

4.1.3 Configuration of New Libraries or Tools

Some plug-ins need additional tools or libraries to be fully functional. The configure script
takes care of these in two steps. First, it checks that an appropriate version of each external
dependency exists on the system. Second, it verifies for each plug-in that its dependencies
are met. Section 4.1.4 explains how to make a plug-in depend on a given library (or tool).
The present section deals with the first part, that is how to check for a given library or tool
on a system. Configuration of new libraries and configuration of new tools are similar. In
this section, we therefore choose to focus on the configuration of new libraries. This is done
by calling a predefined macro called configure_library2, or its more specialized version
configure_pkg.
configure_pkg is meant to be used for checking the presence of OCaml libraries that are
managed as findlib3 packages, which is the case for most modern OCaml libraries nowadays.
It takes two arguments, the name of the package (as known by findlib), and a message that
will be displayed if the package is not found.

2For tools, there is a macro configure_tool which works in the same way as configure_library.
3http://projects.camlcity.org/projects/findlib.html

47

http://projects.camlcity.org/projects/findlib.html


CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

The configure_library macro takes three arguments. The first one is the name of the
library, the second one is a filename which is used by the script to check the availability of
the library. In case there are multiple locations possible for the library, this argument can be
a list of filenames. In this case, the argument must be properly quoted (i.e. enclosed in a [,
] pair). Each name is checked in turn. The first one which corresponds to an existing file is
selected. If no name in the list corresponds to an existing file, the library is considered to be
unavailable. The last argument is a warning message to display if a configuration problem
appears (usually because the library does not exist). Using these arguments, the script checks
the availability of the library.
Results of these macros are available through variables which are substituted in the files
generated by configure, where library stands for the uppercased version of the library name.

• For configure_pkg:

– HAS_OCAML_library is set to yes or no depending on the availability of the library

• For configure_library:

– HAS_library is set to yes or no depending on the availability of the library
– SELECTED_library contains the name of the version selected as described above.

If checking for OCaml libraries and object files without configure_pkg, remember that they
come in two flavors: bytecode and native code, which have distinct suffixes. Therefore, you
should use the variables LIB_SUFFIX (for libraries) and OBJ_SUFFIX (for object files) to check
the presence of a given file. These variables are initialized at the beginning of the configure
script depending on the availability of a native-code compiler on the current installation.

Example 4.1 The library Lablgtksourceview2 (used to have a better rendering of C sources
in the GUI) is part of Lablgtk2 [10]. This is checked through the following command, where
LABLGTKPATH_FOR_CONFIGURE is the path where configure has found Lablgtk2 itself.

configure_library(
[GTKSOURCEVIEW],
[$LABLGTKPATH_FOR_CONFIGURE/lablgtksourceview2.$LIB_SUFFIX],
[lablgtksourceview not found])

4.1.4 Addition of Library/Tool Dependencies

Dependencies upon OCaml packages (checked by configure_pkg) are governed by two
macros:

• plugin_require_pkg(plugin,library) indicates that plugin requires library in order
to be compiled.

• plugin_use_pkg(plugin,library) indicates that plugin uses library, but can neverthe-
less be compiled if library is not installed (potentially offering reduced functionality).

Dependencies upon external tools and libraries (checked by configure_library or
configure_tool) are governed by two macros:

48



4.2. PLUG-IN SPECIFIC CONFIGURE.AC

• plugin_require_external(plugin,library) indicates that plugin requires library in
order to be compiled.

• plugin_use_external(plugin,library) indicates that plugin uses library, but can
nevertheless be compiled if library is not installed (potentially offering reduced func-
tionality).

Recommendation 4.1 The best place to perform such extensions is just after the addition
of p which sets the value of ENABLE_p.

Example 4.2 Plug-in gui requires Lablgtk2 and GnomeCanvas . It also optionally uses
DOT for displaying graphs (graph cannot be displayed without this tool). So, just after its
declaration, there are the following lines in configure.in.

plugin_require_external(gui,lablgtk)
plugin_require_external(gui,gnomecanvas)
plugin_use_external(gui,dot)

4.1.5 Addition of Plug-in Dependencies

Adding a dependency with another plug-in is quite the same as adding a dependency with an
external library or tool (see Section 4.1.4). For this purpose, configure.in uses two macros

• plugin_require(plugin1,plugin2) states that plugin1 needs plugin2.

• plugin_use(plugin1,plugin2) states that plugin1 can be used in absence of plugin2,
but requires plugin2 for full functionality.

There can be mutual dependencies between plug-ins. This is for instance the case for plug-ins
value and from.

4.2 Plug-in Specific Configure.ac

Target readers: standard plug-ins developers.

Prerequisite: Knowledge of autoconf and shell programming.

External plug-ins can have their own configuration file, and can rely on the macros defined for
Frama-C. In addition, as mentioned in section 4.4.2, those plug-ins can be compiled directly
from Frama-C’s own Makefile. In order for them to integrate well in this setting, they should
follow a particular layout, described below. First, they need to be able to refer to the auxiliary
configure.ac file defining Frama-C-specific macros when they are used as stand-alone plug-
ins. This can be done by the following code

m4_define([plugin_file],Makefile)

m4_define([FRAMAC_SHARE_ENV],
[m4_normalize(m4_esyscmd([echo $FRAMAC_SHARE]))])

m4_define([FRAMAC_SHARE],

49



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

[m4_ifval(FRAMAC_SHARE_ENV,[FRAMAC_SHARE_ENV],
[m4_esyscmd(frama-c -print-path)])])

m4_ifndef([FRAMAC_M4_MACROS],
[m4_include(FRAMAC_SHARE/configure.ac)]
)

plugin_file is the file which must be present to ensure that autoconf is called in the
appropriate directory (see documentation for the AC_INITmacro of autoconf). configure.ac
can be found in two ways: either by relying on the FRAMAC_SHARE shell variable (when Frama-
C is not installed, i.e. when configuring the plug-in together with the main Frama-C), or
by calling an installed Frama-C (when installing the plug-in separately). The inclusion of
configure.ac needs to be guarded to prevent multiple inclusions, as the configuration file
of the plug-in might itself be included by configure.in (see section 4.4.2 for more details).
The configuration of the plug-in itself or related libraries and tools can then proceed as
described in Sections 4.1.2 and 4.1.3. References to specific files in the plug-in source directory
should be guarded with the following macro:

PLUGIN_RELATIVE_PATH(file)

If the external plug-in has some dependencies as described in sections 4.1.4 and 4.1.5, the
configure script configure must check that all dependencies are met. This is done with the
following macro:

check_plugin_dependencies

It is only after this point that the variables HAS_library, SELECTED_library, and
ENABLE_plugin get their final value. If parts of the configure script depends on these
variables, they should appear after the call to check_plugin_dependencies.
An external plug-in can have dependencies upon previously installed plug-ins. However two
separately installed plug-ins can not be mutually dependent on each other. Nevertheless,
they can be compiled together with the main Frama-C sources using the –-enable-external
option of configure (see section 4.4.2 for more details).
Finally, the configuration must end with the following command:

write_plugin_config(files)

where files are the files that must be processed by configure (as in AC_CONFIG_FILESmacro).
PLUGIN_RELATIVE_PATH is unneeded here.

For technical reasons, the macros configure_library, configure_tool,
check_plugin_dependencies, and write_plugin_config must not be inside a
conditional part of the configure script. More precisely, they are using the diversion
mechanism of autoconf in order to ensure that the tests are performed after all
dependencies information has been gathered from all existing plugins. Diversion is a
very primitive, text-to-text transformation. Using those macros within a conditional (or
anything that alters the control-flow of the script) is likely to result in putting some
unrelated part of the script in the same branch of the conditional.

4.3 Frama-C Makefile

Target readers: not for standard plug-in developers.

50



4.4. PLUG-IN SPECIFIC MAKEFILE

Prerequisite: Knowledge of make.

In this section, we detail the use of Makefile dedicated to Frama-C compilation. This file
is split in several sections which are described in Section 5.2.2. By default, executing make
only displays an overview of commands. For example, here is the output of the compilation
of source file src/kernel_services/plugin_entry_points/db.cmo.

$ make src/kernel_services/plugin_entry_points/db.cmo
Ocamlc src/ kernel_services /plugin_entry_points/db.cmo

If you wish the exact command line, you have to set variable VERBOSEMAKE to yes like below.
$ make VERBOSEMAKE=yes src/kernel_services/plugin_entry_points/db.cmo

4.4 Plug-in Specific Makefile

Prerequisite: Knowledge of make.

4.4.1 Using Makefile.dynamic

In this section, we detail how to write a Makefile for a given plug-in. Even if it is still
possible to write such a Makefile from scratch, Frama-C provides a generic Makefile, called
Makefile.dynamic, which helps the plug-in developer in this task. This file is installed in
the Frama-C share directory. So for writing your plug-in specific Makefile, you have to:

1. set some variables for customizing your plug-in;

2. include Makefile.dynamic.

Example 4.3 A minimal Makefile is shown below. That is the Makefile of the plug-in
Hello World presented in the tutorial (see Section 2.3). Each variable set in this example
has to be set by any plug-in.

FRAMAC_SHARE := $(shell frama-c-config -print-share-path)
PLUGIN_NAME = Hello
PLUGIN_CMO = hello_options hello_print hello_run
include $(FRAMAC_SHARE)/Makefile.dynamic

FRAMAC_SHARE must be set to the Frama-C share directory. PLUGIN_NAME is the capitalized
name of your plug-in while PLUGIN_CMO is the list of the files .cmo generated from your OCaml
sources. Note that, by default, during compilation of your plug-in all warnings are disabled;
it is recommended to define environment variable DEVELOPMENT=yes to enable the standard
set of compilation warnings.

To run your specific Makefile, you must have properly installed Frama-C before, or compile
your plugin together with Frama-C, as described in section 4.4.2.

You may possibly need to do make depend before running make.
Which variable can be set and how they are useful is explained Section 5.2.3. Furthermore,
Section 5.2.5 explains the specific features of Makefile.dynamic.

51



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.4.2 Compiling Frama-C and external plug-ins at the same time

Target readers: plug-in developers using the git repository of Frama-C.

It is also possible to get a completely independent plug-in recompiled and tested together
with Frama-C’s kernel. For that, Frama-C must be aware of the existence of the plug-in. This
can be done in two ways:

• All sub-directories of src/plugins directory in Frama-C sources which are not known
to Frama-C’s kernel are assumed to be external plug-ins.

• One can use the --enable-external option of configure which takes as argument the
path to the plug-in

In the first case, the plug-in behaves as any other built-in plug-in: autoconf run in Frama-C’s
main directory will take care of it and it can be enabled or disabled in the same way as
the others. If the plug-in has its own configure.in or configure.ac file, the configuration
instructions contained in it (in particular additional dependencies) will be read as well.
In the second case, the plug-in is added to the list of external plug-ins at configure time. If
the plug-in has its own configure, it is run as well.
Provided it properly uses the variables set by Makefile.dynamic, the plug-in’s Makefile
does not require specific adaptations depending on whether it is compiled together with the
kernel or with respect to an already-existing Frama-C installation. It is however possible to
check the compilation mode with the FRAMAC_INTERNAL variable, which is set to yes when
compiling together with Frama-C kernel and to no otherwise.
In addition, if a plug-in wishes to install custom files through the install:: target, this
target must depend on clean-install. Indeed, Frama-C’s main Makefile needs to remove
all existing files before performing a fresh installation, in order to avoid potential interference
with an obsolete (and usually incompatible) module from a previous installation. Adding
the dependency thus ensures that the removal will take place before any new file has been
installed.

Example 4.4 If a plug-in wants to install external/my_lib.cm* in addition to the normal
plugin files, it should use the following code: 4

install:: clean-install
$(PRINT_INSTALL) "My beautiful library"
$(MKDIR) $(FRAMAC_LIBDIR)
$(CP) external/my_lib.cm* $(FRAMAC_LIBDIR)

4.5 Testing

In this section, we present ptests, a tool provided by Frama-C in order to perform non-
regression and unit tests.
ptests runs the Frama-C toplevel on each specified test (which are usually C files). Specific
directives can be used for each test. Each result of the execution is compared from the

4Note that the variable FRAMAC_LIBDIR is automatically set in the Frama-C Makefile to the value provided
by the command frama-c-config -print-libpath.

52



4.5. TESTING

previously saved result (called the oracle). A test is successful if and only if there is no
difference. Actually the number of results is twice that the number of tests because standard
and error outputs are compared separately.
First Section 4.5.1 shows how to use ptests. Next Section 4.5.2 introduces how to use prede-
fined directives to configure tests, while Section 4.5.3 explains how to set up various testing
goals for the same test base. Last Section 4.5.4 details ptests’ options, while Section 4.5.5
describes ptests’ directive.

4.5.1 Using ptests

If you’re using a Makefile written following the principles given in section 4.4, the simplest
way of using ptests is through make tests which is roughly equivalent to

$ time ./bin/ptests.opt

or
$ time ptests.opt

depending on whether you’re inside Frama-C’s sources or compiling a plug-in against an
already installed Frama-C distribution.
A specific target $(PLUGIN_NAME)_TESTS will specifically run the tests of the plugin. One
can add new tests as dependencies of this target. The default tests are run by the target
$(PLUGIN_NAME)_DEFAULT_TESTS.
Additionally, when running make tests or make $(PLUGIN_NAME)_TESTS it is possible to
pass options to ptests.opt through the PTESTS_OPTS variable.

Example 4.5 The following command will update the oracles of all tests of the Aoraï plug-in:
$ make PTESTS_OPTS=-update Aorai_TESTS

ptests.opt runs tests belonging to a sub-directory of directory tests that is specified in
ptests configuration file. This configuration file, tests/ptests_config, is automatically
generated by Frama-C’s Makefile from the options you set in your plugin’s Makefile. ptests
also accepts specific test suites in arguments. A test suite is either the name of a sub-directory
in directory tests or a filename (with its path relative to the current directory).

Example 4.6 If you want to test plug-in sparecode and specific test
tests/pdg/variadic.c, just run

$ ./bin/ptests.opt sparecode tests/pdg/variadic.c

which should display (if there are 7 tests in directory tests/sparecode)
% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished . Summary:
Run = 8
Ok = 16 of 16

ptests accepts different options which are used to customize test sequences. These options
are detailed in Section 4.5.4.

53



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Example 4.7 If the code of plug-in plugin has changed, a typical sequence of tests is the
following one.

$ ./bin/ptests.opt plugin
$ ./bin/ptests.opt -update plugin
$ make tests

So we first run the tests suite corresponding to plugin in order to display what tests have been
modified by the changes. After checking the displayed differences, we validate the changes by
updating the oracles. Finally we run all the test suites in order to ensure that the changes do
not break anything else in Frama-C.

Example 4.8 For adding a new test, the typical sequence of command is the following.

$ ./bin/ptests.opt -show tests/plugin/new_test.c
$ ./bin/ptests.opt -update tests/plugin/new_test.c
$ make tests

We first ask ptests to print the output of the test on the command line, check that it corre-
sponds to what we expect, and then take it as the initial oracle. If some changes have been
made to the code in order to let new_test.c pass, we must of course launch the whole test
suite and check that all existing tests are alright.

If you’re creating a whole new test suite suite, don’t forget to create the sub-directories
suite/result and suite/oracle where ptests will store the current results and the ora-
cles for all the tests in suite

4.5.2 Configuration

In order to exactly perform the test that you wish, some directives can be set in three different
places. We indicate first these places and next the possible directives.

The places are:

• inside file tests/test_config;

• inside file tests/subdir/test_config (for each sub-directory subdir of tests); or

• inside each test file, in a special comment of the form

/* run.config
... directives ...

*/

In each of the above case, the configuration is done by a list of directives. Each directive has
to be on one line and to have the form

CONFIG_OPTION:value

There is exactly one directive by line. The different directives (i.e. possibilities for
CONFIG_OPTION) are detailed in Section 4.5.5.

54



4.5. TESTING

Concurrency issues: tests using compiled modules (-load-script or -load-module)
may lead to concurrency issues when the same module is used in different test files, or in
different test cases within the same file. One way to avoid issues is to serialize tests via
MODULE directives, which will take care of the compilation and of adding the corresponding
-load-module option to further OPT and STDOPT directives:

MODULE: script.cmx
STDOPT: +"-opt1" ...
STDOPT: #"-opt2" ...

The .cmx extension is optional and the prefix @PTEST_DIR@/ is automatically added to
the module names (the directive accepts a list of modules that can be separed by blank
or comma).
In addition, if the same script tests/suite/script.ml is shared by several test files
in tests/suite, it is necessary to compile the script once when entering the directory
hosting the suite. The MODULE directive is not well suited for that, and it is thus needed
to resort to an EXECNOW directive in tests/suite/test_config:

EXECNOW: make -s @PTEST_DIR@/common_module.cmxs

It is then necessary to explicitly use -load-module @PTEST_DIR@/common_module.cmxs
in the appropriate OPT and STDOPT directives.

Example 4.9 Test tests/sparecode/calls.c declares the following directives.
/* run.config

OPT: -sparecode-analysis
OPT: -slicing-level 2 -slice-return main -slice-print

*/

These directives state that we want to test sparecode and slicing analyses on this file. Thus
running the following instruction executes two test cases.

$ ./bin/ptests.opt tests/sparecode/ calls .c
% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished . Summary:
Run = 2
Ok = 4 of 4

4.5.3 Alternative Testing

You may want to set up different testing goals for the same test base. Common cases include:

• checking the result of an analysis with or without an option;

• checking a preliminary result of an analysis, in particular if the complete analysis is
costly;

• checking separately different results of an analysis.

This is possible with option -config of ptests, which takes as argument the name of a special
test configuration, as in

$ ./bin/ptests.opt -config <special_name> plugin

55



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Then, the directives for this test can be found:

• inside file tests/test_config_<special_name>;

• inside file tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test file, in a special comment of the form

/* run.config_< special_name>
... directives ...

*/

Multiple configurations may share the same set of directives:

/* run.config, run.config_< special_name> [, ...]
... common directives ...

*/

The following wildcard is also supported, and accepts any configuration:
/* run.config* .

All operations for this test configuration should take option -config in argument, as in

$ ./bin/ptests.opt -update -config <special_name> plugin

In addition, option -config <special_name> requires subdirectories
result_<special_name> and oracle_<special_name> to store results and oracle
of the specific configuration.

4.5.4 Detailed options

Figure 4.1 details the options of ptests.

The commands provided through the -diff and -cmp options play two related but distinct
roles. cmp is always used for each test (in fact it is used twice: one for the standard output
and one for the error output). Only its exit code is taken into account by ptests and the
output of cmp is discarded. An exit code of 1 means that the two files have differences. The
two files will then be analyzed by diff, whose role is to show the differences between the
files. An exit code of 0 means that the two files are identical. Thus, they won’t be processed
by diff. An exit code of 2 indicates an error during the comparison (for instance because
the corresponding oracle does not exist). Any other exit code results in a fatal error. It
is possible to use the same command for both cmp and diff with the -use-diff-as-cmp
option, which will take as cmp command the command used for diff.

The -exclude option can take as argument a whole suite or an individual test. It can be
used with any behavior.

The -gui option will launch Frama-C’s GUI instead of the console-based toplevel. It can be
combined with -byte to launch the bytecode GUI. In this mode the default level of parallelism
is reduced to 1.

56



4.5. TESTING

kind Name Specification Default

Toplevel
-add-options Additional options appended to the

normal toplevel command-line
-add-options-pre Additional options prepended to the

normal toplevel command line
-byte Use bytecode toplevel no
-opt Use native toplevel yes
-gui Use GUI instead of console-based

toplevel
no

Behavior

-run Delete current results; run tests and
examine results

yes

-dry-run Print commands, but do not execute
them

no

-examine Only examine current results; do
not run tests

no

-show Run tests and show results, but do
not examine them; implies -byte

no

-update Take current results as new oracles;
do not run tests

no

Misc.

-exclude suite Do not consider the given suite
-diff cmd Use cmd to show differences between

results and oracles when examining
results

diff -u

-cmp cmd Use cmd to compare results against
oracles when examining results

cmp -s

-use-diff-as-cmp Use the same command for diff and
cmp

no

-j n Set level of parallelism to n 4
-v Increase verbosity (up to twice) 0

-help Display helps no

Figure 4.1: ptests options.

4.5.5 Detailed directives

Figure 4.2 shows all the directives that can be used in the configuration header of a test (or
a test suite). Any directive can identify a file using a relative path. The default directory
considered for . is always the parent directory of directory tests. The DONTRUN and NOFRAMAC
directives do not need to have any content, but it might be useful to provide an explanation
of why the test should not be run (e.g test of a feature that is under development and not
fully operational yet).

If there are OPT/STDOPT directives after a NOFRAMAC directive, they will be executed, unless
they are themselves discarded by another subsequent NOFRAMAC directive.

As said in Section 4.5.2, these directives can be found in different places:

1. default value of the directive (as specified in Fig. 4.2);

2. inside file tests/test_config;

57



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

3. inside file tests/subdir/test_config (for each sub-directory subdir of tests); or

4. inside each test file

As presented in Section 4.5.3, alternative directives for test configuration <special_name>
can be found in slightly different places:

• default value of the directive (as specified in Fig. 4.2);

• inside file tests/test_config_<special_name>;

• inside file tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test file.

For a given test tests/suite/test.c, each existing file in the sequence above is read in
order and defines a configuration level (the default configuration level always exists).

• CMD allows changing the command that is used for the following OPT directives (until
a new CMD directive is found). No new test case is generated if there is no further OPT
directive. At a given configuration level, the default value for directive CMD is the last
CMD directive of the preceding configuration level.

• LOG adds a file to be compared against an oracle in the next OPT or STDOPT directive.
Several files can be monitored from a single OPT/STDOPT directive, through several LOG
directives. These files must be generated in the result directory of the corresponding
suite (and potentially alternative configuration). After an OPT or STDOPT directive is
encountered, the set of additional LOG files is reset to its default.

• By default, Frama-C is expected to return successfully (i.e., with an exit status of 0).
If a test is supposed to lead to an error, an EXIT directive must be used. It takes
as argument an integer (typically 1 to denote a user error) representing the expected
exit status for the subsequent tests. All tests triggered by OPT or STDOPT directives
encountered after the EXIT directive will be expected to exit with the corresponding
status, until a new EXIT directive is encountered. (EXIT: 0 will thus indicate that
subsequent tests are expected to exit normally).

• If there are several directives OPT in the same configuration level, they correspond to
different test cases. The OPT directive(s) of a given configuration level replace(s) the
ones of the preceding level.

• The STDOPT directive takes as default set of options the last OPT directive(s) of the
preceding configuration level. If the preceding configuration level contains several OPT
directives, hence several test cases, STDOPT is applied to each of them, leading to the
same number of test cases. The syntax for this directive is the following.

STDOPT: [[+#-]"opt" ...]

58



4.5. TESTING

options are always given between quotes. An option following a + (resp. #) is added to
the end (resp. start) of current set of options while an option following a - is removed
from it. The directive can be empty (meaning that the corresponding test will use the
standard set of options). As with OPT, each STDOPT corresponds to a different (set of)
test case(s). LOG directives preceding an STDOPT are taken into account.

• The syntax for directives EXECNOW and EXEC is the following.

EXECNOW: [ [ LOG file | BIN file ] ... ] cmd

or

EXEC: [ [ LOG file | BIN file ] ... ] cmd

Files after LOG are log files generated by command cmd and compared from oracles,
whereas files after BIN are binary files also generated by cmd but not compared from
oracles. Full access path to these files have to be specified only in cmd. All the commands
described by directives EXECNOW or EXEC are executed in order and before running any
of the other directives. If the execution of one EXECNOW or EXEC directive fails (i.e.
has a non-zero return code), the remaining actions are not executed. EXECNOW or EXEC
directives from a given level are added to the directives of the following levels.

The distinction between EXECNOW and EXEC only occurs when the command is put in
a test configuration file: EXECNOW executes the command only once for the test suite,
while EXEC executes it once per test file of the test suite.

• The MACRO directive has the following syntax:

MACRO: macro-name content

where macro-name is any sequence of characters containing neither a blank nor an @, and
content extends until the end of the line. Once such a directive has been encountered,
each occurrence of @macro-name@ in a CMD, LOG, OPT, STDOPT or EXECNOW directive at
this configuration level or in any level below it will be replaced by content. Existing
predefined macros are listed in section 5.3.1.

• MODULE directive takes as argument the name of a .cmxs module. It will then add
a directive to compile this file with the command @PTEST_MAKE_MODULE@ <MODULE>
where @PTEST_MAKE_MODULE@ defaults to make -s. Option -load-module <MODULE>
will then be appended to any subsequent Frama-C command triggered by the test.

• The FILEREG directive contains a regular expression indicating which files in the direc-
tory containing the current test suite are actually part of the suite. This directive is
only usable in a test_config configuration file.

59



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• The FILTER directive specifies a transformation on the test result files before the com-
parison to the oracles. The filtering command read the result from the standard input
and the oracle will be compared with the standard output of that command. In such a
directive, the predefined macro @PTEST_ORACLE@ is set to the basename of the oracle.
That allows running a diff command with the oracle of another test configuration:

FILTER: diff --new-file @PTEST_DIR@/oracle_configuration/@PTEST_ORACLE@ -

Chaining multiple filter commands is possible by defining several FILTER directives
(they are applied in the reverse order), and an empty command drops the previous
FILTER directives.

@ in the text of a directive As mentioned above, @ is recognized by ptests as the
beginning of a macro. If you need to have a literal @ in the text of the directive itself, it
needs to be doubled, i.e. @@ will be translated as @.

Summary: ordering of test executions
There is no total ordering between the tests in a test file header. The only guaranteed
order between test executions is the following:

1. EXEC and EXECNOW commands are executed sequentially, from top to bottom.

2. Then, all OPT/STDOPT commands execute in an unspecified order (possibly simulta-
neously).

A consequence of this ordering is that, if you need a test to produce output that will be
consumed by another test, the producer must be defined via EXEC/EXECNOW (e.g. using
@frama-c@ and explicitly giving its arguments), while the consumer can be either in a
later EXEC/EXECNOW, or in a OPT/STDOPT directive.

4.6 Plug-in General Services

Module Plugin provides an access to some general services available for all plug-ins. The
goal of this module is twofold. First, it helps developers to use general Frama-C services.
Second, it provides to the end-user a set of features common to all plug-ins. To access to
these services, you have to apply the functor Plugin.Register.

Each plug-in must apply this functor exactly once.

Example 4.10 Here is how the plug-in From applies the functor Plugin.Register for its
own use.

include Plugin.Register
(struct

let name = "from analysis"
let shortname = "from"
let help = "functional dependencies"

end)

60



4.7. LOGGING SERVICES

Applying this functor mainly provides two different services. First it gives access to functions
for printing messages in a Frama-C-compliant way (see Section 4.7). Second it allows to define
plug-in specific parameters available as options on the Frama-C command line to the end-user
(see Section 4.12).

4.7 Logging Services

Displaying results of plug-in computations to users, warning them of the hypothesis taken by
the static analyzers, reporting incorrect inputs, all these tasks are easy to think about, but
turn out to be difficult to handle in a readable way. As soon as your plug-in is registered (see
Section 4.6 above), though, you automatically benefit from many logging facilities provided
by the kernel. What is more, when logging through these services, messages from your plug-in
combine with other messages from other plug-ins, in a consistent and user-friendly way.
As a general rule, you should never write to standard output and error channels through
OCaml standard libraries. For instance, you should never use Stdlib.stdout and
Stdlib.stderr channels, nor Format.printf-like routines.
Instead, you should use Format.fprintf to implement pretty-printers for your own complex
data, and only the printf-like routines of Log.Messages to display messages to the user.
All these routines are immediately available from your plug-in general services.

Example 4.11 A minimal example of a plug-in using the logging services:
module Self = Plugin.Register
(struct

let name = "foo plugin"
let shortname = "foo"
let help = "illustration of logging services"

end)

let pp_dg out n =
Format.fprintf out
"you have at least debug %d" n

let run () =
Self. result "Hello, this is Foo Logs !";
Self.debug ∼level:0 "Try higher debug levels (%a)" pp_dg 0;
Self.debug ∼level:1 "If you read this, %a." pp_dg 1;
Self.debug ∼level:3 "If you read this, %a." pp_dg 3;

let () = Db.Main.extend run ()

Running this example, you should see:
$ frama-c -foo-debug 2
[foo] Hello, this is Foo Logs !
[foo] Try higher debug levels (you have at least debug 0).
[foo] If you read this, you have at least debug 1.

Notice that your plug-in automatically benefits from its own debug command line parameter,
and that messages are automatically prefixed with the name of the plug-in. We now get into
more details for an advanced usage of logging services.

61



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.7.1 From printf to Log

Below is a simple example of how to make a printf-based code towards being Log-compliant.
The original code, extracted from the Occurrence plug-in in Frama-C-Lithium version is as
follows:

let print_one v l =
Format.printf "variable %s (%d):@\n" v.vname v.vid;
List. iter
(fun (ki, lv) →

Format.printf " sid %a: %a@\n" d_ki ki d_lval lv)
l

let print_all () =
compute ();
Occurrences. iter print_one

The transformation is straightforward. First you add to all your pretty-printing functions an
additional Format.formatter parameter, and you call fprintf instead of printf:

let print_one fmt v l =
Format.fprintf fmt "variable %s (%d):@\n" v.vname v.vid;
List. iter
(fun (ki, lv) →

Format.fprintf fmt " sid %a: %a@\n" d_ki ki d_lval lv)
l

Then, you delegate toplevel calls to printf towards an appropriate logging routine, with a
formatting string containing the necessary "%t" and "%a" formatters:

let print_all () =
compute ();
result "%t" (fun fmt → Occurrences.iter (print_one fmt))

4.7.2 Log Quick Reference

The logging routines for your plug-ins consist in an implementation of the Log.Messages
interface, which is included in the Plugin.S interface returned by the registration of your
plug-in. The main routines of interest are:

result <options> "..."
Outputs most of your messages with this routine. You may specify ∼ level:n option to
discard too detailed messages in conjunction with the verbose command line option.
The default level is 1.

feedback <options> "..."
Reserved for short messages that gives feedback about the progression of long compu-
tations. Typically, entering a function body or iterating during fixpoint computation.
The level option can be used as for result .

debug <options> "..."
To be used for plug-in development messages and internal error diagnosis. You may
specify ∼ level:n option to discard too detailed messages in conjunction with the debug
command line option. The default message level is 1, and the default debugging level
is 0. Hence, without any option, debug discards all its messages.

62



4.7. LOGGING SERVICES

warning <options> "..."
For reporting to the user an important information about the validity of the analysis
performed by your plug-in. For instance, if you locally assume non arithmetic overflow
on a given statement, etc. Typical options include ∼current:true to localize the message
on the current source location.

error <options> "..."
abort <options> "..."

Use these routines for reporting to the user an error in its inputs. It can be used for
non valid parameters, for instance. It should not be used for some not-yet implemented
feature, however.
The abort routine is a variant that raises an exception and thus immediately aborts the
computation5. If you use error , execution will continue until the end of current stage
or current group of the running phase (see section 4.13).

failure <options> "..."
fatal <options> "..."

Use these routines for reporting to the user that your plug-in is now in inconsistent
state or can not continue its computation. Typically, you have just discovered a bug in
your plug-in!
The fatal routine is a variant that raises an exception. failure has a behavior similar
to error above, except that it denotes an internal error instead of a user error.

verify (condition) <options> "..."
First the routine evaluates the condition and the formatting arguments, then, discards
the message if the condition holds and displays a message otherwise. Finally, it returns
the condition value.
A typical usage is for example:

assert (verify (x> 0) "Expected a positive value (%d)" x)

4.7.3 Logging Routine Options

Logging routines have optional parameters to modify their general behavior. Hence their
involved type in Log.mli.

Level Option. A minimal level of verbosity or debugging can be specified for the message
to be emitted. For the result and feedback channels, the verbosity level is used ; for the
debug channel, the debugging level is used.

∼ level:n minimal level required is n.

Category Option Debug, result, and feedback output can be associated to a debugging
key with the optional argument ∼dkey which takes an argument of abstract type category.
Each category must be registered through the register_category function. You can define
subcategories by putting colons in the registered name. For instance a:b:c defines a subcat-
egory c of a:b, itself a subcategory of a. User can then choose to output debugging messages

5The raised exception is not supposed to be caught by anything else than the main entry point of Frama-C.

63



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

belonging to a given category (and its subcategories) with the -plugin-msg-key < category>
option.
In order to decide whether a message should be output, both level and category options are
examined:

• if neither ∼ level nor ∼dkey, the effect is the same as having a level of 1 and no category.

• if only ∼ level is provided, the message is output if the corresponding verbosity or de-
bugging level is sufficient

• if only ∼dkey is used, the message is output if the corresponding category is in used
(even if the verbosity or debugging level is 0)

• if both ∼ level and ∼dkey are present, the message is output if the two conditions above
(sufficient verbosity or debugging level and appropriate category in use) hold. As a
rule of thumb, you should refrain from using both mechanisms to control the output
of a message. If some messages of a category do not have the same importance, use
subcategories to give the user a finer control on what they want to see on the output.

Warning Category Option Warning output can also be associated with a category,
via the ∼wkey optional argument that takes a value of abstract type warn_category.
Warning categories are distinct from plain categories, and must be registered with the
register_warn_category function. As explained in the user manual [3], each category can
be associated with a status that controls what will happen when a warning is triggered, from
completely ignoring it to aborting execution. The default is to emit the warning, but this
can be changed by using the set_warn_status function.

Source Options. By default, a message is not localized. You may specify a source location,
either specifically or by using the current location of an AST visitor.

∼source:s use the source location s (see Log.mli)

∼current:true use the current source location managed by Cil.CurrentLoc.

Emission Options. By default, a message is echoed to the user after its construction, and
it is sent to registered callbacks when emitted. See Section 4.7.4 below for more details on
how to globally modify such a behavior. During the message construction, you can locally
modify the emission process with the following options:

∼emitwith:f suppresses the echo and sends the emitted event only to the callback func-
tion f . Listeners are not fired at all.

∼once:true finally discards the message if the same one was already emitted before with
the ∼once option.

Append Option. All logging routines have the ∼append:f optional parameter, where f is
function taking a Format.formatter as parameter and returning unit. This function f is invoked
to append some text to the logging routine. Such continuation-passing style is sometime
necessary for defining new polymorphic formatting functions. It has been introduced for the
same purpose than standard Format.kfprintf-like functions.

64



4.7. LOGGING SERVICES

4.7.4 Advanced Logging Services

Message Emission
During message construction, the message content is echoed in the terminal. This echo may
be delayed until message completion when ∼once has been used. Upon message completion,
the message is emitted and sent to all globally registered hook functions, unless the ∼emitwith
option has been used.
To interact with this general procedure, the plug-in developer can use the following functions
defined in module Log:

val set_echo: ?plugin: string → ?kinds:kind list → bool → unit
val add_listener: ?plugin:string → ?kinds:kind list → (event → unit) → unit

Continuations
The logging routines take as argument a (polymorphic) formatting string, followed by the
formatting parameters, and finally return unit. It is also possible to catch the generated
message, and to pass it to a continuation that finally returns a value different than unit.
For this purpose, you must use the with_<log> routines variants. These routines take a
continuation f for additional parameter. After emitting the corresponding message in the
normal way, the message is passed to the continuation f . Hence, f has type event → α, and
the log routine returns α.
For instance, you typically use the following code fragment to return a degenerated value
while emitting a warning:

let rec fact n =
if (n> 12) then
with_warning (fun _ → 0) "Overflow for %d, return 0 instead" x

else if n≤ 1 then 1 else n * fact (n-1)

Generic Routines
The Log.Messages interface provides two generic routines that can be used instead of the basic
ones:

log ?kind ?verbose ?debug <options> "..."
Emits a message with the given kind, when the verbosity and/or debugging level are
sufficient.

with_log f ?kind <options> "..."
Emits a message like log, and finally pass the generated message to the continuation
f , and returns its result.

The default kind is Result, but all the other kind of message can be specified. For verbosity
and debugging levels, the message is emitted when:
log "..." verbosity is at least 1
log ∼verbose:n verbosity is at least n
log ∼debug:n debugging is at least n
log ∼verbose:v ∼debug:d either verbosity is at least v

or debugging is at least d.

65



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Channel Management
The logging services are build upon channels, which are basically buffered formatters to
standard output extended with locking, delayed echo, and notification services.
The very safe feature of logging services is that recursive calls are protected. A message is
only echoed upon termination, and a channel buffer is stacked only if necessary to preserve
memory.
Services provided at plug-in registration are convenient shortcuts to low-level logging service
onto channels. The Log interface allows you to create such channels for your own purposes.
Basically, channels ensure that no message emission interfere with each others during echo on
standard output. Hence the forbidden direct access to Stdlib.stdout. However, Log interface
allows you to create such channels on your own, in addition to the one automatically created
for your plug-in.

new_channel name
This creates a new channel. There is only one channel per name, and the function
returns the existing one if any. Plug-in channels are registered under their short-name,
and the kernel channel is registered under Log.kernel_channel_name.

log_channel channel ?kind ?prefix
This routine is similar to the log one.

with_log_channel channel f ?kind ?prefix
This routine is similar to the with_log one.

With both logging routines, you may specify a prefix to be used during echo. The available
switches are:

Label t: use the string t as a prefix for the first echoed line of text, then use an inden-
tation of same length for the next lines.

Prefix t: use the string t as a prefix for all lines of text.

Indent n: use an indentation of n spaces for all lines of text.

When left unspecified, the prefix is computed from the message kind and the channel name,
like for plug-ins.

Output Management
It is possible to ask Log to redirect its output to another channel:

set_output out flush
The parameters are the same than those of Format.make_formatter: out outputs a (sub)-
string and flush actually writes the buffered text to the underlying device.

It is also possible to have a momentary direct access to Stdlib.stdout, or whatever its redi-
rection is:

print_on_output "..."
The routine immediately locks the output of Log and prints the provided message. All
message echoes are delayed until the routine actually returns. Notification to listeners
is not delayed, however.

66



4.8. THE DATATYPE LIBRARY: TYPE VALUES AND DATATYPES

print_delayed "..."
This variant locks the output only when the first character would be written to output.
This gives a chance to a message to be echoed before your text is actually written.

Remark that these two routines can not be recursively invoked, since they have a lock to a non-
delayed output channel. This constraint is verified at runtime to avoid incorrect interleaving,
and you would get a fatal error if the situation occurs.

Warning: these routine are dedicated to expensive output only. You get the advantage of
not buffering your text before printing. But on the other hand, if you have messages to be
echoed during printing, they must be stacked until the end of your printing.

You get a similar functionality with Kernel\_function.CodeOutput.output. This routine prints
your text by calling Log.print_delayed, unless the command line option -ocode has been set.
It this case, your text is written to the specified file.

4.8 The Datatype library: Type Values and Datatypes

Type values and datatypes are key notions of Frama-C. They are both provided by the
Datatype library. An overview as well as technical details may also be found in a related
article in French [18]. A short summary focusing on (un)marshaling is described in another ar-
ticle [6]. First, Section 4.8.1 introduces type values. Then Section 4.8.2 introduces datatypes
built on top of type values.

4.8.1 Type Value

A type value is an OCaml value which dynamically represents a static monomorphic OCaml
type τ . It gets the type τ Type.t. There is at most one type value which represents the type
τ . Type values are used by Frama-C to ensure safety when dynamic typing is required (for
instance to access to a dynamic plug-in API, see Section 4.9.3).

Type values for standard OCaml monomorphic types are provided in module Datatype.

Example 4.12 The type value for type int is Datatype.int while the one for type string
is Datatype.string. The former has type int Type.t while the latter has type string
Type.t.

Type values are created when building datatypes (see Section 4.8.2). There is no type value
for polymorphic types. Instead, they have to be created for each instance of a polymorphic
type. Functions for accessing such type values for standard OCaml polymorphic types are
provided in moduleDatatype.

Example 4.13 The type value for type int list is Datatype.list Datatype.int
while the one for type string →char →bool is Datatype.func2 Datatype.string
Datatype.char Datatype.bool. The former has type int list Type.t while the latter
has type (string →char →bool) Type.t.

67



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.8.2 Datatype

A datatype provides in a single module a monomorphic type and usual values over it. Its
signature is Datatype.S. It contains the type itself, the type value corresponding to this
type, its name, functions equal, compare, hash and pretty which may respectively be
used to check equality, to compare, to hash and to pretty print values of this type. It
also contains some other values (for instance required when marshaling or journalizing).
Whenever possible, a datatype implements an extensible version of Datatype.S, namely
Datatype.S_with_collections. For a type τ , this extended signature additionally provides
modules Set, Map and Hashtbl respectively implementing sets over τ , maps and hashtables
indexed by elements of τ .
Datatypes for OCaml types from the standard library are provided in module Datatype, while
those for AST’s types are provided in module Cil_datatype. Furthermore, when a kernel
module implements a datastructure, it usually implements Datatype.S.

Example 4.14 The following line of code pretty prints whether two statements are equal.
(∗ assuming the type of [stmt1] and [stmt2] is Cil_types.stmt ∗)
Format.fprintf
fmt (∗ a formatter previously defined somewhere ∗)
"statements %a and %a are %sequal"
Cil_datatype.Stmt.pretty stmt1
Cil_datatype.Stmt.pretty stmt2
( if Cil_datatype.Stmt.equal stmt1 stmt2 then "" else "not ")

Example 4.15 Module Datatype.String implements Datatype.S_with_collections.
Thus you can initialize a set of strings in the following way.

let string_set =
List. fold_left
(fun acc s → Datatype.String.Set.add s acc)
Datatype.String.Set.empty
[ "foo"; "bar"; "baz" ]

Building Datatypes
For each monomorphic type, the corresponding datatype may be created by applying the
functor Datatype.Make. In addition to the type t corresponding to the datatype, several
values must be provided in the argument of the functor. These values are properly docu-
mented in the Frama-C API. The following example introduces them in a practical way.

Example 4.16 Here is how to define in the more precise way the datatype corresponding to
a simple sum type.

type ab = A | B of int
module AB =
Datatype.Make
(struct

(∗ the type corresponding to the datatype ∗)
type t = ab
(∗ the unique name of the built datatype; usually the name of the

type ∗)
let name = "ab"

68



4.8. THE DATATYPE LIBRARY: TYPE VALUES AND DATATYPES

(∗ representants of the type: a non−empty list of values of this type. It
is only used for safety check: the best the list represents the
different possible physical representation of the type, the best the
check is. ∗)

let reprs = [ A; B 0 ]
(∗ structural descriptor describing the physical representation of the

type. It is used when marshaling. ∗)
let structural_descr =
Structural_descr.Structure
(Structural_desr.Sum [| [| Structural_descr.p_int |] |])

(∗ equality, compare and hash are the standard OCaml ones ∗)
let equal (x:t) y = x = y
let compare (x:t) y = Stdlib.compare x y
let hash (x:t) = Hashtbl.hash x
(∗ the type ab is a standard functional type, thus copying and rehashing

are simply identity. Rehashing is used when marshaling. ∗)
let copy = Datatype.identity
let rehash = Datatype.identity
(∗ the type ab does never contain any value of type Project.t ∗)
let mem_project = Datatype.never_any_project
(∗ pretty printer ∗)
let pretty fmt x =
Format.pp_print_string fmt
(match x with A → "a" | B n → "b" ^ string_of_int n)

(∗ printer which must produce a valid OCaml value in a given
context. It is used when journalising. ∗)

let internal_pretty_code prec_caller fmt = function
| A →
Type.par

prec_caller
Type.Basic
fmt
(fun fmt → Format.pp_print_string fmt "A")

| B n →
Type.par

prec_caller
Type.Call
fmt
(fun fmt → Format.fprintf fmt "B %d" n)

(∗ A good prefix name to use for an OCaml variable of this type. ∗)
let varname v = "ab" ^ (match v with A → "_a_" | B → "_b_")

end)

Only providing an effective implementation for the values name and reprs is mandatory.
For instance, if you know that you never journalize a value of a type t, you can define
the function internal_pretty_code equal to the predefined function Datatype.pp_fail.
Similarly, if you never use values of type t as keys of hashtable, you can define the function
hash equal to the function Datatype.undefined , and so on. To ease this process, you can
also use the predefined structure Datatype.Undefined.

Example 4.17 Here is a datatype where only the function equal is provided.
(∗ the same type than the one of the previous example ∗)
type ab = A | B of int
module AB =

69



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Datatype.Make
(struct

type t = ab
let name = "ab"
let reprs = [ A; B 0 ]
include Datatype.Undefined
let equal (x:t) y = x = y

end)

One weakness of Datatype.Undefined is that it cannot be used in a projectified state
(see Section 4.11.2) because its values cannot be serializable. In such a case, you can use
the very useful predefined structure Datatype.Serializable_undefined which behaves as
Datatype.Undefined but defines the values which are relevant for (un)serialization.

Datatypes of Polymorphic Types
As for type values, it is not possible to create a datatype corresponding to polymorphic types,
but it is possible to create them for each of their monomorphic instances.

For building such instances, you must not apply the functor Datatype.Make since it will
create two type values for the same type (and with the same name): that is forbidden.

Instead, you must use the functor Datatype.Polymorphic for types with one type parameter
and the functor Datatype.Polymorphic2 for types with two type parameters6. These func-
tors takes as argument how to build the datatype corresponding each monomorphic instance.

Example 4.18 Here is how to apply Datatype.Polymorphic corresponding to the type ’a
t below.

type α ab = A of α | B of int
module Poly_ab =
Datatype.Polymorphic
(struct

type α t = α ab
let name ty = Type.name ty ^ " ab"
let module_name = "Ab"
let reprs ty = [ A ty ]
let structural_descr d =
Structural_descr.Structure
(Structural_descr.Sum
[| [| Structural_descr.pack d |]; [| Structural_descr.p_int |] |]

let mk_equal f x y = match x, y with
| A x, A y → f x y
| B x, B y → x = y
| A _, B _ | B _, A _ → false

let mk_compare f x y = match x, y with
| A x, A y → f x y
| B x, B y → Stdlib.compare x y
| A _, B _ → 1
| B _, A _ → -1

let mk_hash f = function A x → f x | B x → 257 * x
let map f = function A x → A (f x) | B x → B x
let mk_internal_pretty_code f prec_caller fmt = function

6Polymorphic3 and Polymorphic4 also exist in case of polymorphic types with 3 or 4 type parameters.

70



4.9. PLUG-IN REGISTRATION AND ACCESS

| A x →
Type.par

prec_caller
Type.Basic
fmt
(fun fmt → Format.fprintf fmt "A %a" (f Type.Call) x)

| B n →
Type.par

prec_caller
Type.Call
fmt
(fun fmt → Format.fprintf fmt "B %d" n)

let mk_pretty f fmt x =
mk_internal_pretty_code (fun _ → f) Type.Basic fmt x

let mk_varname _ = "ab"
let mk_mem_project mem f = function
| A x → mem f x
| B _ → false

end)
module Ab = Poly_AB.Make

(∗ datatype corresponding to the type [int ab] ∗)
module Ab_int = Ab(Datatype.Int)

(∗ datatype corresponding to the type [int list ab] ∗)
module Ab_Ab_string = Ab(Datatype.List(Datatype.Int))

(∗ datatype corresponding to the type [(string, int) Hashtbl.t ab] ∗)
module HAb = Ab(Datatype.String.Hashtbl.Make(Datatype.Int))

Clearly it is a bit painful. However you probably will never apply this functor yourself. It is
already applied for the standard OCaml polymorphic types like list and function (respectively
Datatype.List and Datatype.Function).

4.9 Plug-in Registration and Access

In this section, we present how to register plug-ins and how to access them. Actually there
are three different ways, but the recommended one is through a .mli file.
Section 4.9.1 indicates how to register and access a plug-in through a .mli file. Section 4.9.2
indicates how to register and access a kernel-integrated plug-in while Section 4.9.3 details
how to register and access a standard plug-in.

4.9.1 Registration through a .mli File

Target readers: plug-in developers.

Prerequisite: Basic knowledge of make.

Each plug-in is compiled into a module of name indicated by the variable PLUGIN_NAME of
its Makefile (say Plugin_A. Its developer has to provide a .mli for this plug-in (following

71



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

the previous example, a file Plugin_A.mli). This .mli file may thus contains the API of the
plug-in.
Another plug-in may then access to Plugin_A as it accesses any other OCaml module, but
it has to declare in its Makefile that it depends on Plugin_A through the special variable
PLUGIN_DEPENDENCIES.

Example 4.19 Plugin_A declares and provides access to a function compute in the following
way.

File File plugin_a/my_analysis_a.ml

let compute () = ...

File File plugin_a/Plugin_A.mli

module My_analysis_a: sig val compute: unit → unit

File File plugin_a/Makefile

PLUGIN_NAME:=Plugin_A
PLUGIN_CMO:=... my_analysis_a ...
...
include Makefile.dynamic

Then, Plugin_B may use this function Compute as follows.

File File plugin_b/my_analysis_b.ml

let compute () = ... Plugin_A.My_analysis_a.compute () ...

File File plugin_b/Makefile

PLUGIN_NAME:=Plugin_B
PLUGIN_CMO:=... my_analysis_b ...
PLUGIN_DEPENDENCIES:=Plugin_A
...
include Makefile.dynamic

4.9.2 Kernel-integrated Registration and Access

Target readers: kernel-integrated plug-in developers.

Prerequisite: Accepting to modify the Frama-C kernel. Otherwise, you can still register
your plug-in as any standard plug-in (see Section 4.9.3 for details).

A database, called Db (in directory src/kernel_services/plugin_entry_points), groups
together the API of all kernel-integrated plug-ins. So it permits easy plug-in collaborations.
Each kernel-integrated plug-in is only visible through Db. For example, if a plug-in A wants to
know the results of another plug-in B, it uses the part of Db corresponding to B. A consequence
of this design is that each plug-in has to register in Db by setting a function pointer to the
right value in order to be usable from others plug-ins.

72



4.9. PLUG-IN REGISTRATION AND ACCESS

Example 4.20 Plug-in Impact registers function compute_pragmas in the following way.

File src/plugins/impact/register.ml

let compute_pragmas () = ...
let () = Db.Impact.compute_pragmas ← compute_pragmas

Thus each developer who wants to use this function calls it by pointer dereferencing like this.
let () = !Db.Impact.compute_pragmas ()

If a kernel-integrated plug-in has to export some datatypes usable by other plug-ins, such
datatypes have to be visible from module Db. Thus they cannot be declared in the plug-in
implementation itself like any other plug-in declaration because postponed type declarations
are not possible in OCaml.
Such datatypes are called plug-in types. The solution is to put these plug-ins types in some
files linked before Db; hence you have to put them in another directory than the plug-in
directory. The best way is to create a directory dedicated to types.

Recommendation 4.2 The suggested name for this directory is p_types for a plug-in p.

If you add such a directory, you also have to modify Makefile by extending variable
FRAMAC_SRC_DIRS (see Section 5.2.3).

Example 4.21 Suppose you are writing a plug-in p which exports a specific type t corre-
sponding to the result of the plug-in analysis. The standard way to proceed is the following.

File src/plugins/p_types/p_types.mli

type t = ...

File src/kernel_services/plugin_entry_points/db.mli

module P : sig
val run_and_get: (unit → P_types.t) ref

(∗∗ Run plugin analysis (if it was never launched before).
@return result of the analysis. ∗)

end

File share/Makefile.common

FRAMAC_SRC_DIRS= ... plugins/p_types
# Extend this variable with the new directory

This design choice has a side effect : it reveals exported types. You can always hide them
using a module to encapsulate the types (and provide corresponding getters and setters to
access them).
At this point, part of the plug-in code is outside the plug-in implementation. This code
should be linked before Db 7.
To this effect, the files containing the external plug-in code must be added to the Makefile
variable PLUGIN_TYPES_CMO (see Section 5.2.3).

7A direct consequence is that you cannot use the whole Frama-C functionalities, such as module Db, inside
this code.

73



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.9.3 Dynamic Registration and Access

Target readers: standard plug-ins developers.

Registration of kernel-integrated plug-ins requires to modify module Db which belongs to
the Frama-C kernel. Such a modification is not possible for standard plug-ins which are
fully independent of Frama-C. Consequently, the Frama-C kernel provides another way for
registering a plug-in through the module Dynamic.
In short, you have to use the function Dynamic.register in order to register a value from
a dynamic plug-in and you have to use function Dynamic.get in order to apply a function
previously registered with Dynamic.register.

Registering a value
The signature of Dynamic.register is as follows.

val register : plugin: string → string → α Type.t → journalize:bool → α →
unit

The first argument is the name of the plug-in registering the value and the second one is a
binding name of the registered OCaml value. The pair (plug-in name, binding name) must
not be used for value registration anywhere else in Frama-C. It is required in order for another
plug-in to access to this value (see next paragraph). The third argument is the type value of
the registered value (see Section 4.8.1). It is required for safety reasons when accessing to the
registered value (see the next paragraph). The labeled fourth argument journalize indicates
whether a total call to this function must be written in the journal (see also Section 4.10).
The usual value for this argument is true. The fifth argument is the value to register.

Example 4.22 Here is how the function run of the plug-in hello of the tutorial is registered.
The type of this function is unit → unit.

let run () : unit = ...
let () =
Dynamic.register

∼plugin:"Hello"
"run"
(Datatype.func Datatype.unit Datatype.unit)
∼ journalize :true
run

If the string "Hello.run" is already used to register a dynamic value, then the exception
Type.AlreadyExists is raised during plug-in initialization (see Section 4.13).
The function call Datatype.func Datatype.unit Datatype.unit returns the type value
representing unit → unit. Note that, because of the type of Dynamic.register and the
types of its arguments, the OCaml type checker complains if the third argument (here the
value run) has not the type unit → unit.

Accessing to a registered value
The signature of function Dynamic.get is as follows.

val get: plugin: string → string → α Type.t → α

74



4.9. PLUG-IN REGISTRATION AND ACCESS

The arguments must be the same than the ones used at value registration time (with
Dynamic.register). Otherwise, depending on the case, you will get a compile-time or a
runtime error.

Example 4.23 Here is how the previously registered function run of Hello may be applied.
let () =
Dynamic.get

∼plugin:"Hello"
"run"
(Datatype.func Datatype.unit Datatype.unit)
()

The given strings and the given type value must be the same than the ones used when reg-
istering the function. Otherwise, an error occurs at runtime. Furthermore, the OCaml type
checker will complain either if the third argument (here ()) is not of type unit or if the
returned value (here () also) is not of type unit.

The above-mentioned mechanism requires access to the type value corresponding to the type
of the registered value. Thus it is not possible to access a value of a plug-in-defined type.
For solving this issue, Frama-C provides a way to access type values of plug-in-defined types
in an abstract way through the functor Type.Abstract.

Example 4.24 There is no current example in the Frama-C open-source part, but consider
a plug-in which provides a dynamic API for callstacks as follows.

module P =
Plugin.Register
(struct

let name = "Callstack"
let shortname = "Callstack"
let help = "callstack library"

end)

(∗ A callstack is a list of a pair (kf ∗ stmt) where [kf] is the kernel
function called at statement [stmt]. Building the datatype also creates the
corresponding type value [ty]. ∗)

type callstack = (Kernel_function.t * Cil_datatype.Stmt.t) list

(∗ Implementation ∗)
let empty = []
let push kf stmt stack = (kf, stmt) :: stack
let pop = function [] → [] | _ :: stack → stack
let rec print = function
| [] → P.feedback ""
| (kf, stmt) :: stack →
P.feedback "function %a called at stmt %a"
Kernel_function.pretty kf
Cil_datatype.Stmt.pretty stmt;

print stack

(∗ Type values ∗)
let kf_ty = Kernel_function.ty
let stmt_ty = Cil_datatype.Stmt.ty

75



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

module D =
Datatype.Make
(struct
type t = callstack
let name = "Callstack.t"
let reprs = [ empty; [ Kernel_function.dummy (), Cil.dummyStmt ] ]
include Datatype.Serializable_undefined

end)

(∗ Dynamic API registration ∗)
let register name ty =
Dynamic.register ∼plugin:"Callstack" ∼journalize:false name ty

let empty = register "empty" D.ty empty
let push = register "push" (Datatype.func3 kf_ty stmt_ty D.ty D.ty) push
let pop = register "pop" (Datatype.func D.ty D.ty) pop
let print = register "print" (Datatype.func D.ty Datatype.unit) print

You have to use the functor Type.Abstract to access to the type value corresponding to the
type of callstacks (and thus to access to the above dynamically registered functions).

(∗ Type values ∗)
let kf_ty = Kernel_function.ty
let stmt_ty = Cil_datatype.Stmt.ty

(∗ Access to the type value for abstract callstacks ∗)
module C = Type.Abstract(struct let name = "Callstack.t" end)

let get name ty = Dynamic.get ∼plugin:"Callstack" name ty

(∗ mutable callstack ∗)
let callstack_ref = ref (get "empty" C.ty)

(∗ operations over this mutable callstack ∗)

let push_callstack =
(∗ getting the function outside the closure is more efficient ∗)
let push = get "push" (Datatype.func3 kf_ty stmt_ty C.ty C.ty) in
fun kf stmt → callstack_ref ← push kf stmt !callstack_ref

let pop_callstack =
(∗ getting the function outside the closure is more efficient ∗)
let pop = get "pop" (Datatype.func C.ty C.ty) in
fun () → callstack_ref ← pop !callstack_ref

let print_callstack =
(∗ getting the function outside the closure is more efficient ∗)
let print = get "print" (Datatype.func C.ty Datatype.unit) in
fun () → print !callstack_ref

(∗ ... algorithm using the callstack ... ∗)

76



4.10. JOURNALIZATION

4.10 Journalization

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

4.11 Project Management System

Prerequisite: Knowledge of the OCaml module system and labels.

In Frama-C, a key notion detailed in this section is the one of project. An overview as well
as technical details may also be found in a related article in French [17]. Section 4.11.1
first introduces the general principle of project. Section 4.11.2 introduces the notion of
states. State registration is detailed in Sections 4.11.3 and 4.11.4. The former is dedicated to
standard (high-level) registration, while the latter is dedicated to low-level registration. Then
Section 4.11.5 explains how to use projects. Finally Section 4.11.6 details state selections.

4.11.1 Overview and Key Notions

A project groups together an AST with the set of global values attached to it. Such values
are called states. Examples of states are parameters (see Section 4.12) and results of analyses
(Frama-C extensively uses memoization [14, 15] in order to prevent running analyses twice).
In a Frama-C session, several projects (and thus several ASTs) can exist at the same time.
The project library ensures project non-interference: modifying the value of a state in a
project does not impact any value of any state in any other project. To ensure this property,
each state must be registered in the project library as explained in Sections 4.11.3 and 4.11.4.
Relations between states and projects are summarized in Figure 4.3.
To ease development, Frama-C maintains a current project (Project.current ()): all op-
erations are automatically performed on it. For instance, calling Ast.get () returns the
Frama-C AST of the current project. It is also possible to access values in others projects as
explained in Section 4.11.5.

4.11.2 State: Principle

If some data should be part of the state of Frama-C, you must register it in the project
library (see Sections 4.11.3 and 4.11.4).

Here we first explain what are the functionalities of each state and then we present the general
principle of registration.

State Functionalities
Whenever you want to attach some data (e.g. a table containing results of an analysis) to an
AST, you have to register it as an internal state. The main functionalities provided to each
internal state are the following.

• It is automatically updated whenever the current project changes. Your data are thus
always consistent with the current project. More precisely, you still work with your

77

http://bts.frama-c.com


CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

global data (for instance, a hashtable or a reference) as usual in OCaml. The project
library silently changes the data when required (usually when the current project is
changing). The extra cost due to the project system is usually an extra indirection.
Figure 4.4 summarizes these interactions between the project library and your state.

• It is part of the information saved on disk for restoration in a later session.

• It may be part of a selection which is a consistent set of states. With such a selection,
you can control on which states project operations are consistently applied (see Sec-
tion 4.11.6). For example, it is possible to clear all the states which depend on Value
Analysis results.

• It is possible to ensure inter-analysis consistency by setting state dependencies.
For example, if the entry point of the analyzed program is changed (using
Globals.set_entry_point), all the results of analyses depending on it (like value anal-
ysis’ results) are automatically reset. If such a reset were not performed, the results
of the value analysis would not be consistent anymore with the current entry point,
leading to incorrect results.

Example 4.25

!Db.Value.compute();
Kernel.feedback "%B" (Db.Value.is_computed ()); (∗ true ∗)
Globals.set_entry_point "f" true;
Kernel.feedback "%B" (Db.Value.is_computed ()); (∗ false ∗)

As the value analysis has been automatically reset when setting the entry point, the
above code outputs

[kernel] true
[kernel] false

State Registration: Overview

For registering a new state, functor State_builder.Register is provided. Its use is de-
scribed in Section 4.11.4 but it is a low-level functor which is usually difficult to apply in a
correct way. Higher-level functors are provided to the developer in modules State_builder
and Cil_state_builder that allow the developer to register states in a simpler way. They
internally apply the low-level functor in the proper way. Module State_builder provides
state builders for standard OCaml datastructures like hashtables whereas Cil_state_builder
does the same for standard Cil datastructures (like hashtables indexed by AST statements)8.
They are described in Section 4.11.3.

Registering a new state must be performed when the plugin is initialized. Thus, using
OCaml let module construct to register the new state is forbidden (except if you really
know what you are doing).

8These datastructures are only mutable datastructures (like hashtables, arrays and references) because
global states are always mutable.

78



4.11. PROJECT MANAGEMENT SYSTEM

4.11.3 Registering a New State

Here we explain how to register and use a state. Registration through the use of the low-level
functor State_builder.Register is postponed in Section 4.11.4 because it is more tricky
and rarely useful.
In most non-Frama-C applications, a state is a global mutable value. One can use it to store
results of analyses. For example, using this mechanism inside Frama-C to create a state
which would memoize some information attached to statements would result in the following
piece of code.

open Cil_datatype
type info = Kernel_function.t * Cil_types.varinfo
let state : info Stmt.Hashtbl.t = Stmt.Hashtbl.create 97
let compute_info (kf,vi) = ...
let memoize s =
try Stmt.Hashtbl.find state s
with Not_found → Stmt.Hashtbl.add state s (compute_info s)

let run () = ... !Db.Value.compute (); ... memoize some_stmt ...

However, if one puts this code inside Frama-C, it does not work because this state is not
registered as a Frama-C state. For instance, it is never saved on the disk and its value is
never changed when setting the current project to a new one. For this purpose, one has to
transform the above code into the following one.

module State =
Cil_state_builder.Stmt_hashtbl
(Datatype.Pair(Kernel_function)(Cil_datatype.Varinfo))
(struct

let size = 97
let name = "state"
let dependencies = [ Db.Value.self ]

end)
let compute_info (kf,vi) = ...
let memoize = State.memo compute_info
let run () = ... !Db.Value.compute (); ... memoize some_stmt ...

A quick look on this code shows that the declaration of the state itself is more complicated
(it uses a functor application) but its use is simpler. Actually what has changed?

1. To declare a new internal state, apply one of the predefined functors in modules
State_builder or Cil_state_builder (see interfaces of these modules for the list
of available modules). Here we use Cil_state_builder.Stmt_hashtbl which provides
a hashtable indexed by statements. The type of values associated to statements is a pair
of Kernel_function.t and Cil_types.varinfo. The first argument of the functor is
then the datatype corresponding to this type (see Section 4.8.2). The second argument
provides some additional information: the initial size of the hashtable (an integer sim-
ilar to the argument of Hashtbl.create), an unique name for the resulting state and
its dependencies. This list of dependencies is built upon values self which are called
state kind (or simply kind) and are part of any state’s module (part of the signature of
the low-level functor State_builder.Register). This value represents the state itself
as first-class value (like type values for OCaml types, see Section 4.8.1).

2. From outside, a state actually hides its internal representation in order to ensure some
invariants: operations on states implementing hashtables do not take hashtables as

79



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

arguments because they implicitly use the hidden hashtable. In our example, a prede-
fined memo function is used in order to memoize the computation of compute_info.
This memoization function implicitly operates on the hashtable hidden in the internal
representation of State.

Postponed dependencies Sometimes, you want to access a state kind before defining it.
That is usually the case when you have two mutually-dependent states: the dependencies of
the first one provided when registering it must contain the state kind of the second one which
is created by registering it. But this second registration also requires a list of dependencies
containing the first state kind.

For solving this issue, it is possible to postpone the addition of a state kind to dependencies
until all modules have been initialized. However, dependencies must be correct before any-
thing serious is computed by Frama-C. So the right way to do this is the use of the function
Cmdline.run_after_extended_stage (see Section 4.13 for advanced explanation about the
way Frama-C is initialized).

Example 4.26 Plug-in from puts a reference to its state kind in the following way. This
reference is initialized at module initialization time.

File src/kernel_services/plugin_entry_points/db.mli

module From = struct
...
val self : State.t ref

end

File src/kernel_services/plugin_entry_points/db.ml

module From = struct
...
val self = ref State.dummy (∗ postponed ∗)

end

File src/plugins/from/functionwise.ml

module Tbl =
Kernel_function.Make_Table
(Function_Froms)
(struct

let name = "functionwise_from"
let size = 97
let dependencies = [ Db.Value.self ]

end)
let () =
(∗ performed at module initialization runtime. ∗)
Db.From.self ← Tbl.self

Plug-in pdg uses from for computing its own internal state. So it declares this dependency
as follows.

File src/plugins/pdg/register.ml

80



4.11. PROJECT MANAGEMENT SYSTEM

module Tbl =
Kernel_function.Make_Table
(PdgTypes.Pdg)
(struct

let name = "Pdg.State"
let dependencies = [] (∗ postponed because !Db.From.self may

not exist yet ∗)
let size = 97

end)
let () =
Cmdline.run_after_extended_stage
(fun () →

State_dependency_graph.add_codependencies
∼onto:Tbl.self
[ !Db.From.self ])

Dependencies over the AST Most internal states depend directly or indirectly on the
AST of the current project. However, the AST plays a special role as a state. Namely, it
can be changed in place, bypassing the project mechanism. In particular, it is possible to
add globals. Plugins that perform such changes should inform the kernel when they are done
using Ast.mark_as_changed or Ast.mark_as_grown. The latter must be used when the only
changes are additions, leaving existing nodes untouched, while the former must be used for
more intrusive changes. In addition, it is possible to tell the kernel that a state is “monotonic”
with respect to AST changes, in the sense that it does not need to be cleared when nodes
are added (the information that should be associated to the new nodes will be computed as
needed). This is done with the function Ast.add_monotonic_state. Ast.mark_as_grown
will not touch such a state, while Ast.mark_as_changed will clear it.

4.11.4 Direct Use of Low-level Functor State_builder.Register

Functor State_builder.Register is the only functor which really registers a state. All the
others internally use it. In some cases (e.g. if you define your own mutable record used as a
state), you have to use it. Actually, in the Frama-C kernel, there are only three direct uses of
this functor over thousands of state registrations: so you will certainly never use it.

This functor takes three arguments. The first and the third ones respectively correspond to
the datatype and to information (name and dependencies) of the states: they are similar to
the corresponding arguments of the high-level functors (see Section 4.11.3).

The second argument explains how to handle the local version of the state under registration.
Indeed here is the key point: from the outside, only this local version is used for efficiency
purposes (remember Figure 4.4). It would work even if projects do not exist. Each project
knows a global version. The project management system automatically switches the local
version when the current project changes in order to conserve a physical equality between local
version and current global version. So, for this purpose, the second argument provides a type
t (type of values of the state) and five functions create (creation of a new fresh state), clear
(cleaning a state), get (getting a state), set (setting a state) and clear_some_projects (how
to clear each value of type project in the state if any).

81



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

The following invariants must hold:9

create () returns a fresh value (4.1)
∀p of type t, create () = (clear p; set p; get ()) (4.2)

∀p of type t, copy p returns a fresh value (4.3)
∀p1, p2 of type t such that p1 != p2, (set p1; get ()) != p2 (4.4)

Invariant 4.1 ensures that there is no sharing with any value of a same state: so each new
project has got its own fresh state. Invariant 4.2 ensures that cleaning a state resets it to its
initial value. Invariant 4.3 ensures that there is no sharing with any copy. Invariant 4.4 is a
local independence criterion which ensures that modifying a local version does not affect any
other version (different from the global current one) by side effects.

Example 4.27 To illustrate this, we show how functor State_builder.Ref (registering a
state corresponding to a reference) is implemented.

module Ref
(Data: Datatype.S)
(Info: sig include Info val default: unit → Data.t end) =

struct
type data = Data.t
let create () = ref Info.default
let state = ref (create ())

Here we use an additional reference: our local version is a reference on the right value. We
can use it in order to safely and easily implement get and set required by the registration.

include Register
(Datatype.Ref(Data))
(struct
type t = data ref (∗ we register a reference on the given type ∗)
let create = create
let clear tbl = tbl ← Info.default
let get () = !state
let set x = state ← x
let clear_some_projects f x =
if Data.mem_project f !x then begin clear x; true end else false

end)
(Info)

For users of this module, we export “standard” operations which hide the local indirection
required by the project management system.

let set v = !state ← v
let get () = !(!state)
let clear () = !state ← Info.default

end

As you can see, the above implementation is error prone; in particular it uses a double indirec-
tion (reference of reference). So be happy that higher-level functors like State_builder.Ref
are provided which hide such implementations from you.

9As usual in OCaml, = stands for structural equality while == (resp. !=) stands for physical equality (resp.
disequality).

82



4.11. PROJECT MANAGEMENT SYSTEM

4.11.5 Using Projects

As said before, all operations are done by default on the current project. But sometimes plug-
in developers have to explicitly use another project, for example when the AST is modified
(usually through the use of a copy visitor, see Section 4.17) or replaced (e.g. if a new one is
loaded from disk).

An AST must never be modified inside a project. If such an operation is re-
quired, you must either create a new project with a new AST, usually by using
File.init_project_from_cil_file or File.init_project_from_visitor; or write
the following line of code (see Section 4.11.6):

let selection = State_selection.only_dependencies Ast.self in
Project.clear ~selection ()

Operations over projects are grouped together in module Project. A project has type
Project.t. Function Project.set_current sets the current project on which all opera-
tions are implicitly performed.

Example 4.28 Suppose that you saved the current project into file foo.sav in a previous
Frama-C session10 thanks to the following instruction.

Project.save "foo.sav"

In a new Frama-C session, executing the following lines of code (assuming the value analysis
has never been computed previously)

let print_computed () =
Kernel.feedback "%B" (Db.Value.is_computed ())

in
print_computed (); (∗ false ∗)
let old = Project.current () in
try

let foo = Project.load ∼name:"foo" "foo.sav" in
Project.set_current foo;
!Db.Value.compute ();
print_computed (); (∗ true ∗)
Project.set_current old;
print_computed () (∗ false ∗)

with Project.IOError _ →
Kernel.abort "error while loading"

displays
[kernel] false
[kernel] true
[kernel] false

This example shows that the value analysis has been computed only in project foo and not in
project old.

An important invariant of Frama-C is: if p is the current project before running an analysis,
then p will be the current project after running it. It is the responsibility of any plug-in
developer to enforce this invariant for his/her own analysis.

10A session is one execution of Frama-C (through frama-c or frama-c-gui).

83



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

To be sure to enforce the above-mentioned invariant, the project library provides an alter-
native to the use of Project.set_current: Project.on applies an operation on a given
project without changing the current project (i.e. locally switch the current project in order
to apply the given operation and, afterwards, restore the initial context).

Example 4.29 The following code is equivalent to the one given in Example 4.28.
let print_computed () =
Value_parameters.feedback "%B" (Db.Value.is_computed ())

in
print_computed (); (∗ false ∗)
try

let foo = Project.load ∼name:"foo" "foo.sav" in
Project.on foo
(fun () → !Db.Value.compute (); print_computed () (∗ true ∗)) ();

print_computed () (∗ false ∗)
with Project.IOError _ →

exit 1

It displays
false
true
false

4.11.6 Selections

Most operations working on a single project (e.g. Project.clear or Project.on) have
an optional parameter selection of type State_selection.t. This parameter allows the
developer to specify on which states the operation applies. A selection is a set of states which
allows the developer to consistently handle state dependencies.

Example 4.30 The following statement clears all the results of the value analysis and all
its dependencies in the current project.

let selection = State_selection.with_dependencies Db.Value.self in
Project.clear ∼ selection ()

The selection explicitly indicates that we also want to clear all the states which depend on the
value analysis’ results.

Use selections carefully: if you apply a function f on a selection s and f handles a state
which does not belong to s, then the computed result by Frama-C is potentially incorrect.

Example 4.31 The following statement applies a function f in the project p (which is not
the current one). For efficiency purposes, we restrict the considered states to the command
line options (see Section 4.12).

Project.on ∼selection:(Parameter_state.get_selection ()) p f ()

This statement only works if f only handles values of the command line options. If it tries
to get the value of another state, the result is unspecified and all actions using any state of
the current project and of project p also become unspecified.

84



4.12. COMMAND LINE OPTIONS

4.12 Command Line Options

Prerequisite: Knowledge of the OCaml module system.

Values associated with command line options are called parameters. The parameters of the
Frama-C kernel are stored in module Kernel while the plug-in specific ones have to be defined
in the plug-in source code.

4.12.1 Definition

In Frama-C, a parameter is represented by a value of type Typed_parameter.t and by a
module implementing the signature Parameter_sig.S. The first representation is a low-level
one required by emitters (see Section 4.18) and the GUI. The second one provides a high-
level API: each parameter is indeed a state (see Section 4.11.2). Several signatures extending
Parameter_sig.S are provided in order to deal with the usual parameter types. For example,
there are signatures Parameter_sig.Int and Parameter_sig.Bool for integer and boolean
parameters. Mostly, these signatures provide getters and setters for modifying parameter
values.
Implementing such an interface is very easy thanks to a set of functors provided by the output
module of Plugin.Register. Indeed, you have just to choose the right functor according to
your option type and potentially the wished default value. Below are some examples of such
functors (see the signature Parameter_sig.Builder for an exhaustive list).

1. False (resp. True) builds a boolean option initialized to false (resp. true).

2. Int (resp. Zero) builds an integer option initialized to a specified value (resp. to 0).

3. String (resp. Empty_string ) builds a string option initialized to a specified value
(resp. to the empty string "").

4. String_set builds an option taking a set of strings in argument (initialized to the
empty set).

5. Kernel_function_set builds an option taking a set of kernel functions in argument
(initialized to the empty set).

Each functor takes as argument (at least) the name of the command line option corresponding
to the parameter and a short description for this option.

Example 4.32 The parameter corresponding to the option -occurrence of the plug-in
occurrence is the module Print (defined in the file src/plugins/occurrence/options.ml).
It is implemented as follows.

module Print =
False
(struct

let option_name = "-occurrence"
let help = "print results of occurrence analysis"

end)

So it is a boolean parameter initialized by default to false. The declared interface for this
module is simply

85



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

module Print: Parameter_sig.Bool

Another example is the parameter corresponding to the option -impact-pragma of the
plug-in impact. This parameter is defined by the module Pragma (defined in the file
src/plugins/impact/options.ml). It is implemented as follows.

module Pragma =
Kernel_function_set
(struct

let option_name = "-impact-pragma"
let arg_name = "f1, ..., fn"
let help = "use the impact pragmas in the code of functions f1,...,fn"

end)

Thus it is a set of kernel_functions initialized by default to the empty set. Frama-C uses
the field arg_name in order to print the name of the argument when displaying help. The
field help is the help message itself. The Interface for this module is simple:

module Pragma: Parameter_sig.Kernel_function_set

Recommendation 4.3 Parameters of a same plug-in plugin should belong to a module
called Options, Plugin_options, Parameters or Plugin_parameters inside the plug-in di-
rectory.

Using a kernel parameters or a parameter of your own plug-in is very simple: you have simply
to call the function get corresponding to your parameter.

Example 4.33 To know whether Frama-C uses unicode, just write
Kernel.Unicode.get ()

Inside the plug-in From, just write
From_parameters.ForceCallDeps.get ()

in order to know whether callsite-wise dependencies have been required.

Using a parameter of a plug-in p in another plug-in p′ requires the use of module
Dynamic.Parameter: since the module defining the parameter is not visible from the out-
side of its plug-in, you have to use the dynamic API of plug-in p in which p’s parameters
are automatically registered (see Section 4.9.3). The module Dynamic.Parameter defines
sub-modules which provide easy access to parameters according to their OCaml types.

Example 4.34 Outside the plug-in From, just write
Dynamic.Parameter.Bool.get "-calldeps" ()

in order to know whether callsite-wise dependencies have been required.

4.12.2 Tuning

It is possible to modify the default behavior of command line options in several ways by
applying functions just before or just after applying the functor defining the corresponding
parameter.
Functions which can be applied afterwards are defined in the output signature of the applied
functor.

86



4.13. INITIALIZATION STEPS

Example 4.35 Here is how the option "-slicing-level" restricts the range of its argument to
the interval [0; 3].

module Calls =
Int
(struct

let option_name = "-slicing-level"
let default = 2
let arg_name = ""
let help = "..." (∗ skipped here ∗)
end)

let () = Calls.set_range ∼min:0 ∼max:3

Functions which can be applied before applying the functor are defined in the module
Parameter_customize.

Example 4.36 Here is how the opposite of option "-safe-arrays" is renamed into "-unsafe-
arrays" (otherwise, by default, it would be "-no-safe-arrays").

let () = Parameter_customize.set_negative_option_name "-unsafe-arrays"
module SafeArrays =
True
(struct

let module_name = "SafeArrays"
let option_name = "-safe-arrays"
let help = "for arrays that are fields inside structs, assume that \

accesses are in bounds"
end)

4.13 Initialization Steps

Prerequisite: Knowledge of linking of OCaml files.

In a standard way, Frama-C modules are initialized in the link order which remains mostly
unspecified, so you have to use side-effects at module initialization time carefully.

This section details the different stages of the Frama-C boot process to help advanced plug-in
developers interact more deeply with the kernel process. It can also be useful for debugging
initialization problems.
As a general rule, plug-in routines must never be executed at link time. Any useful code, be
it for registration, configuration or C-code analysis, should be registered as function hooks to
be executed at a proper time during the Frama-C boot process. In general, registering and
executing a hook is tightly coupled with handling the command line parameters.
The parsing of the command line parameters is performed in several phases and stages , each
one dedicated to specific operations. For instance, journal replays should be performed after
loading dynamic plug-ins, and so on. Following the general rule stated at the beginning of
this section, even the kernel services of Frama-C are internally registered as hooks routines
to be executed at a specific stage of the initialization process, among plug-ins ones.
From the plug-in developer point of view, the hooks are registered by calling the
run_after_xxx_stage routines in Cmdline module and extend routine in the Db.Main mod-
ule.

87



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

The initialization phases and stages of Frama-C are described below, in their execution order.

A – The Initialization Stage: this stage initializes Frama-C compilation units, following
some partially specified order. More precisely:

1. the architecture dependencies depicted on Figure 3.1 (cf. p. 41) are respected. In
particular, the kernel services are linked first, then the kernel integrated types for
plug-ins, and finally the plug-ins are linked in unspecified order;

2. when the GUI is present, for any plug-in p, the non-gui modules of p are always linked
before the gui modules of p;

3. finally, the module Boot is linked at the very end of this stage.

Plug-in developers cannot customize this stage. In particular, the module Cmdline (one
of the first linked modules, see Figure 3.1) performs a very early configuration stage,
such as checking if journalization has to be activated (cf. Section 4.10), or setting the
global verbosity and debugging levels.

B – The Early Stage: this stage initializes the kernel services. More precisely:

(a) first, the journal name is set to its right value (according to the option
-journal-name) and the default project is created;

(b) then, the parsing of command line options registered for the Cmdline.Early stage;
(c) finally, all functions registered through Cmdline.run_after_early_stage are exe-

cuted in an unspecified order.

C – The Extending Stage: the searching and loading of dynamically linked plug-ins, of
journal, scripts and modules is performed at this stage. More precisely:

(a) the command line options registered for the Cmdline.Extending stage are treated,
such as -load-script and -add-path;

(b) the hooks registered through Cmdline.run_during_extending_stage are executed.
Such hooks include kernel function calls for searching, loading and linking the various
plug-ins, journal and scripts compilation units, with respect to the command line
options parsed during stages B and C.

D – The Running Phase: the command line is split into several groups of command line
arguments, each of them separated by an option -then or an option -then-on p (thus
if there is n occurrences of -then or -then-on p, then there are n+1 groups). For each
group, the following stages are executed in sequence: all the stages are executed on the
first group provided on the command line, then they are executed on the second group,
and so on.

1. The Extended Stage: this step is reserved for commands which require that all
plug-ins are loaded but which must be executed very early. More precisely:

(a) the command line options registered for the Cmdline.Extended stage are treated,
such as -verbose-* and -debug-*;

(b) the hooks registered through Cmdline.run_after_extended_stage. Most of
these registered hooks come from postponed internal-state dependencies (see Sec-
tion 4.11.3).

88



4.14. CUSTOMIZING THE AST CREATION

Remark that both statically and dynamically linked plug-ins have been loaded at this
stage. Verbosity and debug level for each plug-in are determined during this stage.

2. The Exiting Stage: this step is reserved for commands that make Frama-C exit
before starting any analysis at all, such as printing help information:
(a) the command line options registered for the Cmdline.Exiting stage are treated;
(b) the hooks registered through Cmdline.run_after_exiting_stage are exe-

cuted in an unspecified order. All these functions should do nothing (using
Cmdline.nop) or raise Cmdline.Exit for stopping Frama-C quickly.

3. The Loading Stage: this is where the initial state of Frama-C can be replaced by
another one. Typically, it would be loaded from disk through the -load option or
computed by running a journal (see Section 4.10). As for the other stages:
(a) first, the command line options registered for the Cmdline.Loading stage are

treated;
(b) then, the hooks registered through Cmdline.run_after_loading_stage are ex-

ecuted in an unspecified order. These functions actually change the initial state
of Frama-C with the specified one. The Frama-C kernel verifies as far as possible
that only one new-initial state has been specified.

Normally, plug-ins should never register hooks for this stage unless they actually set
a different initial state than the default one. In such a case:
They must call the function Cmdline.is_going_to_load while initializing.

4. The Configuring Stage: this is the usual place for plug-ins to perform special
initialization routines if necessary, before having their main entry points executed.
As for previous stages:
(a) first, the command line options registered for the Cmdline.Configuring stage

are treated. Command line parameters that do not begin by a hyphen (character
’-’) are not options and are treated as C files. Thus they are added to the list
of files to be preprocessed or parsed for building the AST (on demand);

(b) then, the hooks registered through Cmdline.run_after_configuring_stage are
executed in an unspecified order.

5. The Setting Files Stage: this stage sets the C files to analyze according to those
indicated on the command line. More precisely:
(a) first, each argument of the command line which does not begin by a hyphen

(character ’-’) is registered for later analysis;
(b) then, the hooks registered through Cmdline.run_after_setting_files are ex-

ecuted in an unspecified order.
6. The Main Stage: this is the step where plug-ins actually run their main entry

points registered through Db.Main.extend. For all intents and purposes, you should
consider that this stage is the one where these hooks are executed.

4.14 Customizing the AST creation

Prerequisite: None.

Plug-ins may modify the way source files are transformed into the AST over which the
analyses are performed. Customization of the front-end of Frama-C can be done at several
stages.

89



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

A – Parsing: this stage takes care of converting an individual source file into a parsed AST
(a.k.a Cabs, which differs from the type-checked AST on which most analyses operate).
By default, source files are treated as C files, possibly needing a pre-processing phase.
It is possible to tell Frama-C to use another parser for files ending with a given suffix by
registering this parser with the File.new_file_type function. Suffixes .h, .i, .c and
.ci are reserved for Frama-C kernel. The registered parser is supposed to return a pair
consisting of a type-checked AST (Cil_types.file) and a parsed AST (Cabs.file).
The former can be obtained from the latter with the Cabs2cil.convFile function,
which guarantees that the resulting Cil_types.file respects all invariants expected by
the Frama-C kernel.

B – Type-checking: a normal Cabs.file (i.e. not obtained through a custom parsing
function) can be transformed before being type-checked. Transformation hooks are
registered through Frontc.add_syntactic_transformation.

C – After linking: Once all source files have been processed, they are all linked together
in a single AST. Transformations can be performed on the resulting AST at two stages:

1. before clean-up (i.e. removal of useless temporary variables and prototypes that are
never called). At that stage, global tables indexing information related to the AST
have not yet been filled.

2. after clean-up. At this stage, index tables are filled, and can thus be used. On the
other hand, the transformation must take care itself of keeping in sync the AST and
the tables

Registering a transformation for this stage is done through the func-
tion File.add_code_transformation_before_cleanup (respectively
File.add_code_transformation_after_cleanup). If such a transformation modify
the control-flow graph of a function f, in particular by adding statements, it must call
File.must_recompute_cfg, in order to have the graph recomputed afterwards.

4.15 Customizing the machine model

Prerequisite: None.

Several aspects of the C standard that are implementation-defined, such as the width of
standard integer types, endianness, signedness of the char type, etc., as well as a few compiler
and architecture specific features, can be customized using a machdep configuration, defining
a new machine model.
To create a new machine model, define an instance of Cil_types.mach. You can base
it on the examples available in tests/misc/custom_machdep/custom_machdep.ml and
src/kernel_internals/runtime/machdeps.ml. The new definition can be added to Frama-
C’s database using File.new_machdep.

Example 4.37 A custom machine description may be implemented as follows (the meaning
of each field is presented later in this section):

let my_machine =
{

version = "generic C compiler for my machine";

90



4.15. CUSTOMIZING THE MACHINE MODEL

compiler = "generic";
cpp_arch_flags = [];
sizeof_short = 2;
sizeof_int = 4;
sizeof_long = 4;
sizeof_longlong = 8;
sizeof_ptr = 4;
sizeof_float = 4;
sizeof_double = 8;
sizeof_longdouble = 12;
sizeof_void = 1;
sizeof_fun = 1;
size_t = "unsigned long";
wchar_t = "int";
ptrdiff_t = "int";
alignof_short = 2;
alignof_int = 4;
alignof_long = 4;
alignof_longlong = 4;
alignof_ptr = 4;
alignof_float = 4;
alignof_double = 4;
alignof_longdouble = 4;
alignof_str = 1;
alignof_fun = 1;
alignof_aligned = 16;
char_is_unsigned = false;
const_string_literals = true;
little_endian = true;
underscore_name = false ;
has__builtin_va_list = true;

}

let () = File.new_machdep "my_machine" my_machine

After this code is loaded, Frama-C can be instructed to use the new machine model using the
-machdep command line option.
If you intend to use Frama-C’s standard library headers, you must also do the following:

• define constant __FC_MACHDEP_<CUSTOM>, replacing <CUSTOM> with the name
(in uppercase letters) of your created machdep; this can be done via
-cpp-extra-args="-D__FC_MACHDEP_<CUSTOM>";

• provide a header file with macro definitions corresponding to your OCaml definitions.
For the most part, these are macros prefixed by __FC_, corresponding to standard
C macro definitions, e.g., __FC_UCHAR_MAX. These definitions are used by Frama-C’s
<limits.h> and other headers to provide the standard C definitions. The test file
tests/misc/custom_machdep/__fc_machdep_custom.h (reproduced below) contains
a complete example of the required definitions. Other examples can be found in
share/libc/__fc_machdep.h.

Make sure that your custom header defines the __FC_MACHDEP include guard, and that the
program you are analyzing includes this header before all other headers. One way to ensure
this without having to modify any source files is to use an option such as -include in GCC.

91



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Example 4.38 Contents of tests/misc/custom_machdep/__fc_machdep_custom.h, used
as example for creating custom machdeps. Notice the unusual size for int (3 bytes), selected
for testing purposes only, and inconsistent with the chosen values for INT_MIN and INT_MAX,
which do not fit in 3 bytes.

/* skeleton of a real custom machdep header.
Note: the values provided here are merely for illustrative purposes

and are not necessarily consistent between them. */
#ifndef __FC_MACHDEP
#define __FC_MACHDEP

#ifdef __FC_MACHDEP_CUSTOM

/* Constants required by the C standard */
#undef __CHAR_UNSIGNED__
#define __WORDSIZE 32
#define __SIZEOF_SHORT 2
#define __SIZEOF_INT 3
#define __SIZEOF_LONG 4
#define __SIZEOF_LONGLONG 8
#define __CHAR_BIT 8
#define __PTRDIFF_T int
#define __SIZE_T unsigned int

#define __FC_SCHAR_MIN (-128)
#define __FC_SCHAR_MAX 127
#define __FC_UCHAR_MAX 255
#define __FC_SHRT_MIN (-32768)
#define __FC_SHRT_MAX 32767
#define __FC_USHRT_MAX 65535
#define __FC_INT_MIN (-2147483647 - 1)
#define __FC_INT_MAX 2147483647
#define __FC_UINT_MAX 4294967295U
#define __FC_LONG_MIN (-2147483647L -1L)
#define __FC_LONG_MAX 2147483647L
#define __FC_ULONG_MAX 4294967295UL
#define __FC_LLONG_MIN (-9223372036854775807LL -1LL)
#define __FC_LLONG_MAX 9223372036854775807LL
#define __FC_ULLONG_MAX 18446744073709551615ULL

#define __INT_MAX_T signed long long
#define __UINT_MAX_T unsigned long long

#define __FC_PATH_MAX 256
#define __FC_SIZE_MAX __FC_ULLONG_MAX

/* Optional constants */
#define __INT8_T signed char
#define __UINT8_T unsigned char
#define __INT16_T signed short
#define __UINT16_T unsigned short

#define __INTPTR_T signed long
#define __UINTPTR_T unsigned long
#define __INT32_T signed long
#define __UINT32_T unsigned long

92



4.15. CUSTOMIZING THE MACHINE MODEL

#define __INT64_T signed long long
#define __UINT64_T unsigned long long

/* Required constants */
#define __INT_LEAST8_T signed char
#define __UINT_LEAST8_T unsigned char
#define __INT_LEAST16_T signed short
#define __UINT_LEAST16_T unsigned short
#define __INT_LEAST32_T signed long
#define __UINT_LEAST32_T unsigned long
#define __INT_LEAST64_T signed long long
#define __UINT_LEAST64_T unsigned long long

#define __INT_FAST8_T signed char
#define __UINT_FAST8_T unsigned char
#define __INT_FAST16_T signed int
#define __UINT_FAST16_T unsigned int
#define __INT_FAST32_T signed long
#define __UINT_FAST32_T unsigned long
#define __INT_FAST64_T signed long long
#define __UINT_FAST64_T unsigned long long

/* POSIX */
#define __SSIZE_T int
/* stdio.h */
#define __FC_L_tmpnam 1024
/* stdint.h */
#define __FC_PTRDIFF_MIN __FC_INT_MIN
#define __FC_PTRDIFF_MAX __FC_INT_MAX
#define __FC_INTMAX_MIN (-9223372036854775807LL -1LL)
#define __FC_INTMAX_MAX 9223372036854775807LL
#define __FC_UINTMAX_MAX 18446744073709551615ULL

#define __FC_EOF (-1)
#define __FC_FOPEN_MAX 20
#define __FC_RAND_MAX 32767
#define __WCHAR_T unsigned short

/* for stdarg.h */
#define __FC_VA_LIST_T char*

/* for time.h */
#define __FC_TIME_T long

/* for wchar.h */
#define __WINT_T unsigned int
#define __FC_WEOF (0xFFFFFFFFU)
#define __FC_WINT_MIN 0
#define __FC_WINT_MAX __FC_UINT_MAX

/* for errno.h */

#define __FC_EPERM 1
#define __FC_ENOENT 2
#define __FC_ESRCH 3

93



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

#define __FC_EINTR 4
#define __FC_EIO 5
#define __FC_ENXIO 6
#define __FC_E2BIG 7
#define __FC_ENOEXEC 8
#define __FC_EBADF 9
#define __FC_ECHILD 10
#define __FC_EAGAIN 11
#define __FC_ENOMEM 12
#define __FC_EACCES 13
#define __FC_EFAULT 14
#define __FC_ENOTBLK 15
#define __FC_EBUSY 16
#define __FC_EEXIST 17
#define __FC_EXDEV 18
#define __FC_ENODEV 19
#define __FC_ENOTDIR 20
#define __FC_EISDIR 21
#define __FC_EINVAL 22
#define __FC_ENFILE 23
#define __FC_EMFILE 24
#define __FC_ENOTTY 25
#define __FC_ETXTBSY 26
#define __FC_EFBIG 27
#define __FC_ENOSPC 28
#define __FC_ESPIPE 29
#define __FC_EROFS 30
#define __FC_EMLINK 31
#define __FC_EPIPE 32
#define __FC_EDOM 33
#define __FC_ERANGE 34
#define __FC_EDEADLK 35
#define __FC_ENAMETOOLONG 36
#define __FC_ENOLCK 37
#define __FC_ENOSYS 38
#define __FC_ENOTEMPTY 39
#define __FC_ELOOP 40
#define __FC_EWOULDBLOCK EAGAIN
#define __FC_ENOMSG 42
#define __FC_EIDRM 43
#define __FC_ECHRNG 44
#define __FC_EL2NSYNC 45
#define __FC_EL3HLT 46
#define __FC_EL3RST 47
#define __FC_ELNRNG 48
#define __FC_EUNATCH 49
#define __FC_ENOCSI 50
#define __FC_EL2HLT 51
#define __FC_EBADE 52
#define __FC_EBADR 53
#define __FC_EXFULL 54
#define __FC_ENOANO 55
#define __FC_EBADRQC 56
#define __FC_EBADSLT 57
#define __FC_EDEADLOCK EDEADLK
#define __FC_EBFONT 59

94



4.15. CUSTOMIZING THE MACHINE MODEL

#define __FC_ENOSTR 60
#define __FC_ENODATA 61
#define __FC_ETIME 62
#define __FC_ENOSR 63
#define __FC_ENONET 64
#define __FC_ENOPKG 65
#define __FC_EREMOTE 66
#define __FC_ENOLINK 67
#define __FC_EADV 68
#define __FC_ESRMNT 69
#define __FC_ECOMM 70
#define __FC_EPROTO 71
#define __FC_EMULTIHOP 72
#define __FC_EDOTDOT 73
#define __FC_EBADMSG 74
#define __FC_EOVERFLOW 75
#define __FC_ENOTUNIQ 76
#define __FC_EBADFD 77
#define __FC_EREMCHG 78
#define __FC_ELIBACC 79
#define __FC_ELIBBAD 80
#define __FC_ELIBSCN 81
#define __FC_ELIBMAX 82
#define __FC_ELIBEXEC 83
#define __FC_EILSEQ 84
#define __FC_ERESTART 85
#define __FC_ESTRPIPE 86
#define __FC_EUSERS 87
#define __FC_ENOTSOCK 88
#define __FC_EDESTADDRREQ 89
#define __FC_EMSGSIZE 90
#define __FC_EPROTOTYPE 91
#define __FC_ENOPROTOOPT 92
#define __FC_EPROTONOSUPPORT 93
#define __FC_ESOCKTNOSUPPORT 94
#define __FC_ENOTSUP 95
#define __FC_EOPNOTSUPP 95
#define __FC_EPFNOSUPPORT 96
#define __FC_EAFNOSUPPORT 97
#define __FC_EADDRINUSE 98
#define __FC_EADDRNOTAVAIL 99
#define __FC_ENETDOWN 100
#define __FC_ENETUNREACH 101
#define __FC_ENETRESET 102
#define __FC_ECONNABORTED 103
#define __FC_ECONNRESET 104
#define __FC_ENOBUFS 105
#define __FC_EISCONN 106
#define __FC_ENOTCONN 107
#define __FC_ESHUTDOWN 108
#define __FC_ETOOMANYREFS 109
#define __FC_ETIMEDOUT 110
#define __FC_ECONNREFUSED 111
#define __FC_EHOSTDOWN 112
#define __FC_EHOSTUNREACH 113
#define __FC_EALREADY 114

95



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

#define __FC_EINPROGRESS 115
#define __FC_ESTALE 116
#define __FC_EUCLEAN 117
#define __FC_ENOTNAM 118
#define __FC_ENAVAIL 119
#define __FC_EISNAM 120
#define __FC_EREMOTEIO 121
#define __FC_EDQUOT 122
#define __FC_ENOMEDIUM 123
#define __FC_EMEDIUMTYPE 124
#define __FC_ECANCELED 125
#define __FC_ENOKEY 126
#define __FC_EKEYEXPIRED 127
#define __FC_EKEYREVOKED 128
#define __FC_EKEYREJECTED 129
#define __FC_EOWNERDEAD 130
#define __FC_ENOTRECOVERABLE 131
#define __FC_ERFKILL 132
#define __FC_EHWPOISON 133

#else
error "I'm supposed to be called with __FC_MACHDEP_CUSTOM macro defined"

#endif
#endif

An example of the complete command-line is presented below, for a custom machdep
called myarch, defined in file my_machdep.ml and with stdlib constants defined in
machdep_myarch.h:

frama-c -load-script my_machdep.ml -machdep myarch \
-cpp-extra-args="-D__FC_MACHDEP_MYARCH -include machdep_myarch.h"

4.16 Machdep record fields

Each field in the machdep record is succintly described in the Cil_types module. We present
below a thorough description of each field.

version : human-readable textual description of the machdep.

compiler : defines whether special compiler-specific extensions will be enabled. It should be
one of the strings below:

msvc : enables Cil.msvcMode, that is, MSVC (Visual Studio)-specific extensions;
gcc : enables Cil.gccMode, that is, GCC-specific extensions;

generic (or any other string): no special compiler-specific extensions.

Note that some compiler extensions, such as attributes, are always enabled.

cpp_arch_flags : list of arguments to be added to the command-line when invoking the C
preprocessor. Typically used to ensure that multiarch compilers apply the appropriate

96



4.16. MACHDEP RECORD FIELDS

predefined macros11. E.g. use ["-m32"] for a 32-bit machdep when preprocessing
with a 64-bit multiarch GCC. Note that, in practice, very few programs rely on such
predefined macros, such as __x86_64 and __i386.

sizeof_short : size (in bytes) of the short type.

sizeof_int : size (in bytes) of the int type.

sizeof_long : size (in bytes) of the long type.

sizeof_longlong : size (in bytes) of the long long type. Note that machdeps (for compiler
"gcc" in particular) must always have at least one type that is 8 bytes wide, which is
typically long long.

sizeof_ptr : size (in bytes) of an object (non-function) pointer.

sizeof_float : size (in bytes) of a single-precision floating point. In implementations com-
pliant with ISO/IEC/IEEE 60559 -IEEE 754, this is always 4.

sizeof_double : size (in bytes) of a double-precision floating point. In implementations
compliant with ISO/IEC/IEEE 60559 - IEEE 754, this is always 8.

sizeof_longdouble : size (in bytes) of a long double floating point. Note: type
long double is currently not supported by existing Frama-C plugins, but this field
exists for future expansion, and to compute sizeof of aggregates properly.

sizeof_void : the result of evaluating sizeof(void) by the compiler (or 0 if unsupported).

sizeof_fun : the result of evaluating sizeof(f), where f is a function (not a function
pointer) by the compiler (or negative if unsupported).

size_t : a string containing the actual type that size_t expands to, e.g. "unsigned long".

wchar_t : a string containing the actual type that wchar_t expands to. If unsupported, you
can use int.

ptrdiff_t : a string containing the actual type that ptrdiff_t expands to. If unsupported,
you can use int.

alignof_short : the result of evaluating _Alignof(short).

alignof_int : the result of evaluating _Alignof(int).

alignof_long : the result of evaluating _Alignof(long).

alignof_longlong : the result of evaluating _Alignof(long long).

alignof_ptr : the result of evaluating _Alignof(char*) (or any other pointer, including
function pointers).

alignof_float : the result of evaluating _Alignof(float).

alignof_double : the result of evaluating _Alignof(double).

alignof_longdouble : the result of evaluating _Alignof(long double).
11Note that the sizes of standard integer types are already defined in the machdep, so they do not depend

on these flags.

97



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

alignof_str : the result of evaluating _Alignof("a") (a literal string).

alignof_fun : the result of evaluating _Alignof(f), where f is a function (or negative if
unsupported).

alignof_aligned : the default alignment of a type having the aligned attribute (or 1 if un-
supported). This corresponds to the default alignment when using #pragma packed()
without a numeric argument.

char_is_unsigned : whether type char is unsigned.

const_string_literals : whether string literals have const chars, or are writable.
If true, the following code has undefined behavior, otherwise it is defined:
char *s = "no"; s[0] = 'g';.

little_endian : whether the machine is little endian.

underscore_name : whether the compiler generates assembly labels by prepending _ to the
identifier. That is, will function foo() have the label foo, or _foo?

has__builtin_va_list : whether __builtin_va_list is a (built-in) type known by the
preprocessor.

__thread_is_keyword : whether __thread is a keyword (otherwise, it can be used as a
standard identifier).

Writing a new machdep Writing a machdep for a new architecture is not trivial, due
to the fact that some steps are hard to automate. If you have a working compiler for the
target architecture, you can use it to produce an executable that will print the contents of
expressions such as sizeof(long), _Alignof(int), etc. You can also use the compiler to
test for unsupported features. In case printf is not available, you can use the exit code of
the program (return code of main). In case you can only preprocess, but not compile and
run the program, the assembly code may provide some useful data.

4.17 Visitors

Prerequisite: Knowledge of OCaml object programming.

Module Cil offers a visitor, Cil.cilVisitor, that allows to traverse (parts of) an AST.
It is a class with one method per type of the AST, whose default behavior is simply to
call the method corresponding to its children. This is a convenient way to perform local
transformations over a whole Cil_types.file by inheriting from it and redefining a few
methods. However, the original Cil visitor is of course not aware of the internal state of
Frama-C itself. Hence, there exists another visitor, Visitor.generic_frama_c_visitor,
which handles projects in a transparent way for the user. There are very few cases where the
plain Cil visitor should be used.

Basically, as soon as the initial project has been built from the C source files (i.e. one of
the functions File.init_∗ has been applied), only the Frama-C visitor should occur.

There are a few differences between the two (the Frama-C visitor inherits from the Cil one).
These differences are summarized in Section 4.17.6, which the reader already familiar with
Cil is invited to read carefully.

98



4.17. VISITORS

4.17.1 Entry Points

Module Cil offers various entry points for the visitor. They are functions called
Cil.visitCilAstType where astType is a node type in the Cil’s AST. Such a function takes
as argument an instance of a cilVisitor and an astType and gives back an astType trans-
formed according to the visitor. The entry points for visiting a whole Cil_types.file
(Cil.visitCilFileCopy, Cil.visitCilFile and visitCilFileSameGlobals) are slightly
different and do not support all kinds of visitors. See the documentation attached to them
in cil.mli for more details.

4.17.2 Methods

As said above, there is a method for each type in the Cil AST (including for
logic annotation). For a given type astType, the method is called vastType12, and
has type astType→astType’ visitAction, where astType’ is either astType or ast-
Type list (for instance, one can transform a global into several ones). visitAction
describes what should be done for the children of the resulting AST node, and
is presented in the next section. In addition, some types have two modes of
visit: one for the declaration and one for use. This is the case for varinfo
(vvdec and vvrbl), logic_var (vlogic_var_decl and vlogic_var_use) logic_info
(vlogic_info_decl and vlogic_info_use), logic_type_info (vlogic_type_info_decl
and vlogic_type_info_use), and logic_ctor_info (vlogic_ctor_info_decl and
vlogic_ctor_info_use). More detailed information can be found in cil.mli.

For the Frama-C visitor, two methods, vstmt and vglob take care of maintaining the
coherence between the transformed AST and the internal state of Frama-C . Thus they
must not be redefined. One should redefine vstmt_aux and vglob_aux instead.

4.17.3 Action Performed

The return value of visiting methods indicates what should be done next. There are six
possibilities:

• SkipChildren the visitor does not visit the children;

• ChangeTo v the old node is replaced by v and the visit stops;

• DoChildren the visit goes on with the children; this is the default behavior;

• JustCopy is only meaningful for the copy visitor. Indicates that the visit should go on
with the children, but only perform a fresh copy of the nodes

• ChangeToPost(v,f) the old node is replaced by v, and f is applied to the result. This is
however not exactly the same thing as returning ChangeTo(f(v)). Namely, in the case
of vglob_aux, f will be applied to v only after the operations needed to maintain the
consistency of Frama-C’s internal state with respect to the AST have been performed.
Thus, ChangeToPost should be used with extreme caution, as f could break some
invariants of the kernel.

12This naming convention is not strictly enforced. For instance the method corresponding to offset is
voffs.

99



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• DoChildrenPost f visit the children and apply the given function to the result.

• JustCopyPost(f) is only meaningful for the copy visitor. Performs a fresh copy of the
nodes and all its children and applies f to the copy.

• ChangeDoChildrenPost(v,f) the old node is replaced by v, the visit goes on with the
children of v, and when it is finished, f is applied to the result. In the case of vstmt_aux,
f is called after the annotations in the annotations table have been visited, but before
they are attached to the new statement, that is, they will be added to the result of
f. Similarly, vglob_aux will consider the result of f when filling the table of globals.
Note that ChangeDoChildrenPost(x,f) where x is the current node is not equivalent
to DoChildrenPost f, as in the latter case, the visitor mechanism knows that it still
deals with the original node.

4.17.4 Visitors and Projects

Copy visitors (see next section) implicitly take an additional argument, which is the project
in which the transformed AST should be put in.
Note that the tables of the new project are not filled immediately. Instead, actions are
queued, and performed when a whole Cil_types.file has been visited. One can access the
queue with the get_filling_actions method, and perform the associated actions on the
new project with the fill_global_tables method.
In-place visitors always operate on the current project (otherwise, two projects would risk
sharing the same AST).

4.17.5 In-place and Copy Visitors

The visitors take as argument a visitor_behavior, which comes in two flavors:
inplace_visit and copy_visit. In the in-place mode, nodes are visited in place, while
in the copy mode, nodes are copied and the visit is done on the copy. For the nodes shared
across the AST (varinfo, compinfo, enuminfo, typeinfo, stmt, logic_var, logic_info
and fieldinfo), sharing is of course preserved, and the mapping between the old nodes and
their copy can be manipulated explicitly through the following functions:

• reset_behavior_name resets the mapping corresponding to the type name.

• get_original_name gets the original value corresponding to a copy (and behaves as
the identity if the given value is not known).

• get_name gets the copy corresponding to an old value. If the given value is not known,
it behaves as the identity.

• set_name sets a copy for a given value. Be sure to use it before any occurrence of the
old value has been copied, or sharing will be lost.

get_original_name functions allow to retrieve additional information tied to the original
AST nodes. Its result must not be modified in place (this would defeat the purpose of
operating on a copy to leave the original AST untouched). Moreover, note that whenever
the index used for name is modified in the copy, the internal state of the visitor behavior
must be updated accordingly (via the set_name function) for get_original_name to
give correct results.

100



4.17. VISITORS

The list of such indices is given Figure 4.5.

Last, when using a copy visitor, the actions (see previous section) SkipChildren and
ChangeTo must be used with care, i.e. one has to ensure that the children are fresh.
Otherwise, the new AST will share some nodes with the old one. Even worse, in such
a situation the new AST might very well be left in an inconsistent state, with uses of
shared node (e.g. a varinfo for a function f in a function call) which do not match the
corresponding declaration (e.g the GFun definition of f).
When in doubt, a safe solution is to use JustCopy instead of SkipChildren and
ChangeDoChildrenPost(x,fun x -> x) instead of ChangeTo(x).

4.17.6 Differences Between the Cil and Frama-C Visitors

As said in Section 4.17.2, vstmt and vglob should not be redefined. Use vstmt_aux and
vglob_aux instead. Be aware that the entries corresponding to statements and globals in
Frama-C tables are considered more or less as children of the node. In particular, if the
method returns ChangeTo action (see Section 4.17.3), it is assumed that it has taken care
of updating the tables accordingly, which can be a little tricky when copying a file from a
project to another one. Prefer ChangeDoChildrenPost. On the other hand, a SkipChildren
action implies that the visit will stop, but the information associated to the old value will be
associated to the new one. If the children are to be visited, it is undefined whether the table
entries are visited before or after the children in the AST.

4.17.7 Example

Here is a small copy visitor that adds an assertion for each division in the program, stating
that the divisor is not zero:

open Cil_types
open Cil

module M = Plugin.Register

(∗ Each annotation in Frama−C has an emitter, for traceability.
We create thus our own, and says that it will only be used to emit code
annotations, and that these annotations do not depend on Frama−C's command
line parameters.

∗)
let syntax_alarm =
Emitter.create
"Syntactic check" [ Emitter.Code_annot ] ∼correctness:[] ∼tuning:[]

class non_zero_divisor prj = object ( self)
inherit Visitor.generic_frama_c_visitor (Visitor_behavior.copy prj)

(∗ A division is an expression: we override the vexpr method ∗)
method! vexpr e = match e.enode with
| BinOp((Div|Mod), _, denom, _) →

let logic_denom = Logic_utils.expr_to_term ∼coerce:false denom in
let assertion = Logic_const.prel (Rneq, logic_denom, Cil.lzero ()) in
(∗ At this point, we have built the assertion we want to insert. It remains

to attach it to the correct statement. The cil visitor maintains the

101



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

information of which statement and function are currently visited in
the [current_stmt] and [current_kf] methods, which return None when
outside of a statement or a function , e.g. when visiting a global
declaration. Here, it necessarily returns [Some]. ∗)

let stmt = match self#current_kinstr with
| Kglobal → assert false
| Kstmt s → s

in
let kf = Option.get self#current_kf in
(∗ The above statement and function are related to the original project. We

need to attach the new assertion to the corresponding statement and
function of the new project. Cil provides functions to convert a
statement (function) of the original project to the corresponding
one of the new project. ∗)

let new_stmt = Visitor_behavior.Get.stmt self#behavior stmt in
let new_kf = Visitor_behavior.Get.kernel_function self#behavior kf in
(∗ Since we are copying the file in a new project, we cannot insert

the annotation into the current table, but in the table of the new
project. To avoid the cost of switching projects back and forth,
all operations on the new project are queued until the end of the
visit , as mentioned above. This is done in the following statement. ∗)

Queue.add
(fun () →

Annotations.add_assert syntax_alarm ∼kf:new_kf new_stmt assertion)
self # get_filling_actions ;

DoChildren
| _ → DoChildren

end

(∗ This function creates a new project initialized with the current file plus
the annotations related to division. ∗)

let create_syntactic_check_project () =
ignore
(File.create_project_from_visitor "syntactic check" (new non_zero_divisor))

let () = Db.Main.extend create_syntactic_check_project

4.18 Logical Annotations

Prerequisite: None.

Logical annotations set by the users in the analyzed C program are part of the AST. However
others annotations (those generated by plug-ins) are not directly in the AST because it would
contradict the rule “an AST must never be modified inside a project” (see Section 4.11.5).
So all the logical annotations (including those set by the users) are put in global projectified
tables maintained up-to-date by the Frama-C kernel. Anytime a plug-in wants either to access
to or to add/delete an annotation, itmust use the corresponding modules or functions and not
the annotations directly stored in the AST. These modules and functions are the following.

• Module Annotations which contains the database of annotations related to the AST
(global annotations, function contracts and code annotations). Adding or deleting an
annotation requires to define an emitter by Emitter.create first.

102



4.19. EXTENDING ACSL ANNOTATIONS

• Module Property_status should be used to get or to modify the validity status
of logical properties. Modifying a property status requires to define an emitter by
Emitter.create first. Key concepts and theoretical foundation of this module are
described in an associated research paper [5].

• Module Property provides access to all logical properties on which property statuses
can be emitted. In particular, an ACSL annotation has to be converted into a property
if you want to access its property statuses.

• Modules Logic_const, Logic_utils and Db.Properties contain several operations
over annotations.

4.19 Extending ACSL annotations

Prerequisite: Knowledge of the ACSL specification language.

Frama-C supports the possibility of adding specific ACSL annotations in the form
of special clauses. Such clauses can be of different categories, as described by
Cil_types.ext_category.

• A contract extension will be stored in the b_extended field of Cil_types.behavior.

• A global extension will be found as a global ACSL annotation in the form of a
Cil_types.Dextended constructor.

• A code annotation extension will be stored with an Cil_types.AExtended constructor.
Such an extension has itself different flavors, determined by the type:

– it can be meant to be evaluated exactly at the current program point (like an
ACSL assert), or

– it can be related to the next statement (or block), like an ACSL statement contract,
or

– it can be a loop extension, or
– it can be used both as a loop extension or be related to the next (non-loop)

statement.

An extension is characterized by its introducing keyword kw, or loop kw for a loop extension.
It is not possible to have the same keyword for two distinct extensions, especially if they
belong to different categories, as this would lead to ambiguities in the parser.
Once an extension is registered a clause of the form kw e1,...,en;, where each ei can be
any syntactically valid ACSL term or predicate, will be treated by the parser as belonging to
the extension kw.
Contract extension clauses must occur after assumes and requires clauses if any, but can be
freely mixed with other behavior clauses (post-conditions, assigns, frees and allocates).
Similarly, in a loop annotation, loop kw e1, ..., en; will be treated as belonging to the
kw extension. In case the loop annotation has a loop variant, the extension must occur
before. Otherwise, there is no ordering constraint with other loop annotations clauses.
Global extensions can appear either alone in a global annotation, or as part of an axiomatic
with a set of other global annotations.

103



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Finally, a code annotation extension must appear as a single code annotation, like any code
annotation.
Code (and loop) extensions can be made specific to a set of existing behaviors using the
standard ACSL for construction. Namely, for bhv: loop kw e1, ..., en; will indicate
that the (loop) extension is supposed to be considered only when behavior bhv is active
(although it is ultimately up to the plugin to decide what to do with this information).
An acsl_extension is a triple (id, kw, ext) where id is its unique ID, used in annotation
tables and generated by Logic_const.new_acsl_extension, kw identifies the extension, and
ext is an acsl_extension_kind and can take three forms:

• Ext_id id with id an int that the plugin can use to refer to the annotation in its
internal state. This identifier is under the full responsibility of the plugin and will
never be used by the kernel.

• Ext_preds preds with preds a possibly empty list of predicates.

• Ext_terms terms with terms a possibly empty list of terms.

For the latter two cases, the corresponding list is traversed normally by the visitor (see
section 4.17).
In order for the extension to be recognized by the parser, it must be registered by one of the
following functions, depending on its category.

• Acsl_extension.register_behavior

• Acsl_extension.register_global

• Acsl_extension.register_code_annot

• Acsl_extension.register_code_annot_next_stmt

• Acsl_extension.register_code_annot_next_loop

• Acsl_extension.register_code_annot_next_both

Each function takes the following mandatory arguments:

• kw the name of the extension,

• typer the type-checking function itself.

• status, a boolean flag indicating whether the extended annotation may have a validity
status, and

During type-checking, the list [e1;...;en] will be given to typer, together with the current
typing environment (which allows discriminating between contract and loop extensions and
will have the appropriate logic labels set in the local environment). typer must return the
corresponding acsl_extension_kind (possibly adding an entry for key id in an internal
table if it chooses to return Ext_id id).
The first argument of typer is a Logic_typing.typing_context which provides lookup
functions for the various kinds of identifiers that are present in the environment, as well as
extensible type-checking functions for predicates, terms, and assigns clauses. Indeed, these

104



4.19. EXTENDING ACSL ANNOTATIONS

functions take themselves as argument a typing_context ctxt and will use the functions of
ctxt to type-check the children of the current node. Extensions can take advantage of this
open recursion to recognize only subtrees of an otherwise normal ACSL predicate or term.
For instance, the following code will let extension foo replace all occurrences of \foo by 42.

open Logic_ptree
open Cil_types
open Logic_typing

let type_foo typing_context _loc l =
let type_term ctxt env expr =
match expr.lexpr_node with
| PLvar "\\foo" → Logic_const.tinteger ∼loc:expr.lexpr_loc 42
| _ → typing_context.type_term ctxt env expr

in
let typing_context = { typing_context with type_term } in
let res =
List.map (typing_context.type_term typing_context (Lenv.empty())) l

in
Ext_terms res

let () = Acsl_extension.register_behavior "foo" type_foo false

With this extension enabled, Frama-C will interpret the following clause in a given source file:
/∗@ foo 84 ≡ \foo + \foo; ∗/

as the following type-checked AST fragment:
/∗@ foo 84 ≡ 42 + 42; ∗/

If the extended clause is of kind Ext_preds l or Ext_terms l, and all the information of
the extension is contained in the list l, no function other than the typing function needs to
be registered. The parsing will use the standard way to parse untyped predicates and terms.
After typing, the visitor will traverse each element of l as well as any predicate or term
present in the AST. The pretty-printer will output these elements as a comma-separated list
preceded by kw (or loop kw if the extension is a loop annotation).
However, depending on the situation, the following optional functions can be provided to the
registration function in order to modify how ACSL extensions are handled by Frama-C:

• preprocessor a transformer to apply on the untyped term or predicate read during
the parsing phase,

• visitor the visitor function to be applied when visiting the extension,

• printer the pretty-printing function associated to the extension,

• short_printer a function used to provide a brief textual representation of an extension.

The preprocessor function is applied just after parsing the extension terms. It takes the
list of untyped terms or predicates and can either return the same list (but reading it to do
some stuff) or return a new list. By default, this function is the identity.
The visitor function is used by the Frama-C visitors. It takes the current visitor, together
with the acsl_extension_kind of the extended clause and must returns a Cil.visitAction.
By default, this function just returns Cil.DoChildren.

105



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

The printer function is used by the Cil_printer.pp_extended function. It takes the cur-
rent pretty-printer, the formatter, together with the acsl_extension_kind of the extended
clause. By default, it prints the list of terms or predicates if the kind is Ext_preds l or
Ext_terms l. If the kind is Ext_id i, it only prints the integer i.
The short_printer function is a function that can be useful for debugging or user-feedback.
As an alternative to Cil_printer.pp_extended, the Cil_printer.pp_short_extended can
be used to get brief description of the content of the extension. It is for example used by the
GUI to get a more informative name for the extension in the file tree. By default, it does not
print anything about the content of the extension, so that the result is "kwd" or "loop kwd".
When the extension kind is Ext_id, it is common that the plugin defining the extension
contains a table that associates some data to this identifier. In such a case, a printer might
be needed to reconstruct the source code from the data so that a pretty printed code can be
parsed again. For the same reason, an extension that registers a preprocessor that modifies
the AST should probably register a printer to recover the original content.
It is also common, when the kind is Ext_id, to define a particular visitor for the extension,
either to ignore the content of the extension as it is in an internal table of the plugin (thus
returning a SkipChildren action) or, on the opposite, to give the possibility to a user defined
visitor to get an access to this content.
The following code shows a more complete extension example. It provides the user a way
to load some types (assumed to be external to Frama-C) so that they can be used in ACSL
specification.

open Logic_ptree
open Logic_typing
open Cil_types

let preprocessor =
List.map (fun e → begin match e with

| { lexpr_node = PLnamed ("load", { lexpr_node = PLvar s}) } →
if not (Logic_env.is_logic_type s) then Logic_env.add_typename s
else Kernel.error "Type already exists %s" s

| _ → ()
end ; e)

module Ts = struct
let id = ref 0
let types = Hashtbl.create 5

let add t = let i = !id in Hashtbl.add types i t ; id ← i + 1 ; i
let find = Hashtbl.find types

end

let typer ctxt loc = function
| [ { lexpr_node = PLnamed ("load", { lexpr_node = PLvar s}) } ] →

let ti = { lt_name = s ; lt_params = [] ; lt_def = None ; lt_attr = []} in
ctxt.add_logic_type s ti ;
Ext_id (Ts.add ti)

| _ →
ctxt.error loc "Expected type loader"

let visitor _ _ = Cil.SkipChildren

let gen_printer s _pp fmt = function

106



4.20. LOCATIONS

| Ext_id i →
Format.fprintf fmt "%s: %s"
( if s then "ext_type" else "load") (Ts.find i).lt_name

| _ → assert false

let printer = gen_printer false
let short_printer = gen_printer true

let () =
Acsl_extension. register_global
"ext_type" ∼preprocessor typer ∼visitor ∼printer ∼short_printer false

Namely, specification:

/∗@ ext_type load: foo ; ∗/
/∗@
axiomatic Pred {
predicate P(foo f) reads \nothing ;

}
∗/
/∗@ lemma X: \forall foo f ; P(f) ; ∗/

is correctly parsed and typed by Frama-C and leads to the following displayed version in the
interface:

4.20 Locations

Prerequisite: None.

In Frama-C, different representations of C locations exist. Section 4.20.1 presents them.
Moreover, maps indexed by locations are also provided. Section 4.20.2 introduces them.

107



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.20.1 Representations

There are four different representations of C locations. Actually only three are really rel-
evant. All of them are defined in module Locations. They are introduced below. See
the documentation of src/kernel_services/abstract_interp/locations.mli for details
about the provided operations on these types.

• Type Location_Bytes.t is used to represent values of C expressions like 2 or ((int)
&a) + 13. With this representation, there is no way to know the size of a value while
it is still possible to join two values. Roughly speaking it is represented by a mapping
between C variables and offsets in bytes.

• Type location, equivalently Location.t is used to represent the right part of a C
affectation (including bitfields). It is represented by a Location_Bits.t (see below)
attached to a size. It is possible to join two locations if and only if they have the same
sizes.

• Type Location_Bits.t is similar to Location_Bytes.t with offsets in bits instead of
bytes. Actually it should only be used inside a location.

• Type Zone.t is a set of bits (without any specific order). It is possible to join two zones
even if they have different sizes.

Recommendation 4.4 Roughly speaking, locations and zones have the same purpose. You
should use locations as soon as you have no need to join locations of different sizes. If you
require to convert locations to zones, use the function Locations.enumerate_valid_bits.

As join operators are provided for these types, they can be easily used in abstract interpre-
tation analyses (which can themselves be implemented thanks to one of functors of module
Dataflow2.

4.20.2 Map Indexed by Locations

Modules Lmap and Lmap_bitwise provide functors implementing maps indexed by locations
and zones (respectively). The argument of these functors have to implement values attached
to indices (resp. locations or zones).
These implementations are quite more complex than simple maps because they automatically
handle overlaps of locations (or zones). So such implementations actually require that the
structures implementing the values attached to indices are at least semi-lattices; see the
corresponding signatures in module Lattice_type. For this purpose, functors of the abstract
interpretation toolbox can help (see in particular module Abstract_interp).

4.21 GUI Extension

Prerequisite: Knowledge of Lablgtk2.

Each plug-in can extend the Frama-C graphical user interface (aka GUI ) in order to
support its own functionalities in the Frama-C viewer. For this purpose, a plug-in

108



4.22. DOCUMENTATION

developer has to register a function of type Design.main_window_extension_points
→ unit thanks to Design.register_extension. The input value of type
Design.main_window_extension_points is an object corresponding to the main win-
dow of the Frama-C GUI. It provides accesses to the main widgets of the Frama-C
GUI and to several plug-in extension points. The documentation of the class type
Design.main_window_extension_points is accessible through the source documentation
(see Section 4.22).

The GUI plug-in code has to be put in separate files into the plug-in directory. Furthermore,
in the Makefile, the variable PLUGIN_GUI_CMO has to be set in order to compile the GUI
plug-in code (see Section 5.2.3).

Besides time-consuming computations have to call the function !Db.progress from time to
time in order to keep the GUI reactive.

The GUI implementation uses Lablgtk2 [10]: you can use any Lablgtk2-compatible code in
your gui extension. A complete example of a GUI extension may be found in the plug-in
Occurrence (see file src/plugins/occurrence/register_gui.ml).

Potential issues All the GUI plug-in extensions share the same window and same
widgets. So conflicts can occur, especially if you specify some attributes on a predefined
object. For example, if a plug-in wants to highlight a statement s in yellow and another
one wants to highlight s in red at the same time, the behavior is not specified but it could
be quite difficult to understand for an user.

4.22 Documentation

Prerequisite: Knowledge of ocamldoc.

Here we present some hints on the way to document your plug-in. First Section 4.22.1
introduces a quick general overview about the documentation process. Next Section 4.22.2
focuses on the plug-in source documentation.

4.22.1 General Overview

Command make doc produces the whole Frama-C source documentation in HTML format.
The generated index file is doc/code/html/index.html. A more general purpose index is
doc/index.html (from which the previous index is accessible).

The previous command takes times. So command make doc-kernel only generates the
kernel documentation (i.e. Frama-C without any plug-in) while make $(PLUGIN_NAME)_DOC
(by substituting the right value for $(PLUGIN_NAME)) generates the documentation for a single
plug-in.

4.22.2 Source Documentation

Each plug-in should be properly documented. Frama-C uses ocamldoc and so you can write
any valid ocamldoc comments.

109



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

ocamldoc tags for Frama-C The tag @since version should document any element intro-
duced after the very first release, in order to easily know the required version of the Frama-C
kernel or specific plug-ins. In the same way, the Frama-C documentation generator provides a
custom tag @modify version description which should be used to document any element
which semantics have changed since its introduction.
Furthermore, the special tag @plugin developer guide must be attached to each function
used in this document.

Plug-in API A plug-in should export functions in its plug-in interface or through modules
Db or Dynamic as explained in Section 4.9.

The interface name of a plug-in plugin must be Plugin.mli. Be careful to capitalization
of the filename which is unusual in OCaml but required here for compilation purposes.

Internal Documentation for Kernel Integrated Plug-ins The Frama-C documen-
tation generator also produces an internal plug-in documentation which may be use-
ful for the plug-in developer itself. This internal documentation is available via file
doc/code/plugin/index.html for each plug-in plugin. You can add an introduction to this
documentation into a file. This file has to be assigned into variable PLUGIN_INTRO of the
Makefile (see Section 5.2.3).
In order to ease access to this internal documentation, you have to manually edit the file
doc/index.html in order to add an entry for your plug-in in the plug-in list.

Internal Documentation for External Plug-ins External plug-ins can be documented
in the same way as plug-ins that are compiled together with Frama-C. However, in order
to be able to compile the documentation with make doc, you must have generated the
documentation of Frama-C’s kernel (make doc, see above) and installed it with the make
install-doc-code command.

110



4.22. DOCUMENTATION

Kind Name Specification default

Command

CMD Program to run ./bin/toplevel.opt
OPT Options given to the program -val -out -input -deps

STDOPT Add and remove options from
the default set

None

EXIT Indicate expected exit status
if not 0.

None

LOG Add an additional file to com-
pare against an oracle

None

EXECNOW Run a command before the
following commands. When
specified in a configuration
file, run it only once.

None

EXEC Similar to EXECNOW, but run it
once per testing file.

None

MACRO Define a new macro None
FILTER Command reading the stan-

dard input used to filter
results. In such a com-
mand, the predefined macro
@PTEST_ORACLE@ is set to the
basename of the oracle.

None

MODULE Register a dynamic module to
be built and to be loaded with
each subsequent test

None

TIMEOUT kill the test after the given du-
ration (in seconds of CPU user
time) and report a failure

None

NOFRAMAC empty the list of frama-c com-
mands to be launched (EXEC
and EXECNOW directives are
still executed).

None

Test suite DONTRUN Do not execute this test None
FILEREG selects the files to test .*\.\(c|i\)

Miscellaneous COMMENT Comment in the configuration None
GCC Unused (compatibility only) None

Figure 4.2: Directives in configuration headers of test files.

States
Projects Project p1 . . . Project pn

AST a value of a in p1 . . . value of a in pn

data d1 value of d1 in p1 . . . value of d1 in pn

. . . . . . . . . . . .
data dm value of dm in p1 . . . value of dm in pn

Figure 4.3: Representation of the Frama-C State.

111



CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

...

...

...

...

Project 1

Project p

Client 1 =

Client n =

project

current

State 1

State n

State 1

State n

local version of state 1

local version of state n

answer n

answer 1

request

broadcasting

Server = Project Library

Figure 4.4: Interaction between the project library and your registered global data.

Type Index
varinfo vid
compinfo ckey
enuminfo ename
typeinfo tname
stmt sid
logic_info l_var_info.lv_id
logic_var lv_id
fieldinfo fname and fcomp.ckey

Figure 4.5: Indices of AST nodes.

112



Chapter 5

Reference Manual

Target readers: Developers who would like to have a deep understanding of Frama-C.

This chapter is a reference manual for Frama-C developers. It provides details completing the
previous chapters.

5.1 Configure.in

Figure 5.1 presents the different parts of configure.in in the order in which they are intro-
duced in the file. The second column of the table indicates whether the given part might need
to be modified by a kernel-integrated plug-in developer. More details are provided below.

Id Name Mod. Reference
1 Configuration of make no
2 Configuration of OCaml no
3 Configuration of mandatory tools/libraries no
4 Configuration of non-mandatory tools/libraries no
5 Platform configuration no
6 Wished Frama-C plug-in yes Sections 4.1.2 and 4.1.4
7 Configuration of plug-in tools/libraries yes Section 4.1.3
8 Checking plug-in dependencies yes Section 4.1.5
9 Makefile creation yes Section 4.1.2
10 Summary yes Section 4.1.2

Figure 5.1: Sections of configure.in.

1. Configuration of make checks whether the version of make is correct. Some useful
option is –enable-verbosemake (resp. –disable-verbosemake) which set (resp. un-
set) the verbose mode for make. In verbose mode, full make commands are displayed
on the user console: it is useful for debugging the makefile. In non-verbose mode, only
command shortcuts are displayed for user readability.

2. Configuration of OCaml checks whether the version of OCaml is correct.

3. Configuration of other mandatory tools/libraries checks whether all the external
mandatory tools and libraries required by the Frama-C kernel are present.

113



CHAPTER 5. REFERENCE MANUAL

4. Configuration of other non-mandatory tools/libraries checks which external
non-mandatory tools and libraries used by the Frama-C kernel are present.

5. Platform Configuration sets the necessary platform characteristics (operating sys-
tem, specific features of gcc, etc) for compiling Frama-C.

6. Wished Frama-C Plug-ins sets which Frama-C plug-ins the user wants to compile.

7. Configuration of plug-in tools/libraries checks the availability of external tools
and libraries required by plug-ins for compilation and execution.

8. Checking Plug-in Dependencies sets which plug-ins have to be disabled (at least
partially) because they depend on others plug-ins which are not available (at least
partially).

9. Makefile Creation creates Makefile.config from Makefile.config.in including
information provided by this configuration.

10. Summary displays summary of each plug-in availability.

5.2 Makefiles

In this section, we detail the organization of the different Makefiles existing in Frama-C. First
Section 5.2.1 presents a general overview. Next Section 5.2.2 details the different sections
of Makefile.config.in, Makefile.common, Makefile.generic, Makefile.generating and
Makefile. Next Section 5.2.3 introduces the variables customizing Makefile.dynamic. Fi-
nally Section 5.2.5 shows specific details of Makefile.dynamic.

5.2.1 Overview

Frama-C uses different Makefiles (plus the plug-in specific ones). They are:

• Makefile: the general Makefile of Frama-C;

• Makefile.generating: it contains the complex rules that generate files. It is not
directly in the general Makefile in order to reduce the dependencies of these rules to
Makefile.generating;

• Makefile.config.in: the Makefile configuring some general variables (especially the
ones coming from configure);

• Makefile.common: the Makefile providing some other general variables;

• Makefile.generic: the Makefile providing generic rules for compiling source files

• .Makefile.plugin.generated: the Makefile introducing specific stuff for plug-in com-
pilation which is generated from Makefile.plugin.template;

• Makefile.dynamic: the Makefile usable by plug-in specific Makefiles.

• Makefile.dynamic_config: this Makefile is automatically generated either from
Makefile.dynamic_config.internal or Makefile.dynamic_config.external. It
sets variables which automatically configure Makefile.dynamic.

114



5.2. MAKEFILES

• Makefile.clean contains specific targets for cleaning which are separated from
Makefile for performance reasons.

• .Makefile.user is a per-user Makefile that can be used to override some variables. If
it is not present, the default values of Makefile variables will be used.

Makefile and .Makefile.user are part of the root directory of the Frama-C distribu-
tion while the other ones are part of directory share. Each Makefile either includes or
is included into at least another one. Figure 5.2 shows these relationships. Makefile

Makefile.config.in Makefile.dynamic_config.internal Makefile.dynamic_config.external

Makefile.common

Makefile.generic
Makefile.dynamic_config

Makefile.generating Makefile . . . .Makefile.plugin.generated Makefile.dynamic

Makefile.plugin.templateMakefile.clean.Makefile.user

specific Makefile for plug-in 1 . . . specific Makefile for plugin n

Caption:
m1 m2 Makefile m1 is included in Makefile m2

m1 m2 Makefile m2 is generated from Makefile m1

orange boxes Plug-in Makefiles
red boxes Generated Makefiles
green boxes Other kernel Makefiles
light green boxes Optional kernel Makefiles

Figure 5.2: Relationship between the Makefiles

and Makefile.dynamic are independent: the first one is used to compile the Frama-C
kernel while the second one is used to compile the Frama-C plug-ins. Their common
variables are defined in Makefile.common (which includes Makefile.config.in). They
also include Makefile.generic, that defines default compilation rules for various kinds
of source files. Makefile.plugin.template defines generic rules and variables for com-
piling plug-ins. It is used to generate .Makefile.plugin.generated for each plugin.

115



CHAPTER 5. REFERENCE MANUAL

.Makefile.plugin.generated is included either by Makefile for kernel-specific plug-ins
integrated in Frama-C Makefile and by Makefile.dynamic for plug-ins with their own Make-
files. .Makefile.user is included by Makefile when the former exists. It is only used when
compiling Frama-C itself, and has no effect for external plugins.

5.2.2 Sections of Makefile, Makefile.generating, Makefile.config.in,
Makefile.common and Makefile.generic

Figure 5.3 presents the different parts of Makefile.config.in, Makefile.common,
Makefile.generic, Makefile.generating and Makefile in the order that they are intro-
duced in these files. The third row of the tabular says whether the given part may be modified
by a kernel-integrated plug-in developer. More details are provided below.

1. Working directories (split between Makefile.config.in and Makefile.common
defines the main directories of Frama-C. In particular, it declares the variable
FRAMAC_SRC_DIRS which should be extended by a plug-in developer if he uses files
which do not belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO is
set, see Section 5.2.3).

2. Installation paths defines where Frama-C has to be installed.

3. Ocaml stuff defines the OCaml compilers and specific related flags.

4. Libraries defines variables for libraries required by Frama-C.

5. Miscellaneous commands defines some additional commands.

6. Miscellaneous variables defines some additional variables.

7. Variables for plug-ins defines some variables used by plug-ins distributed within
Frama-C (and using the configure of Frama-C).

8. Flags defines some variables setting compilation flags.

9. Verbosing sets how make prints the command. In particular, it defines the variable
VERBOSEMAKE which must be set yes in order to see the full make commands in the user
console. The typical use is

$ make VERBOSEMAKE=yes

10. Shell commands sets all the shell commands eventually executed while calling make.

11. Command pretty printing sets all the commands to be used for pretty printing.

Example 5.1 Consider the following target foo in a plug-in specific Makefile.
foo: bar

$(PRINT_CP) $@
$(CP) $< $@

Executing
$ make foo

prints

116



5.2. MAKEFILES

Id Name File Mod. Reference
1 Working directories Makefile.config.in no
2 Installation paths Makefile.config.in no
3 Ocaml stuff Makefile.config.in no
4 Libraries Makefile.config.in no
5 Miscellaneous commands Makefile.config.in no
6 Miscellaneous variables Makefile.config.in no
7 Variables for plug-ins Makefile.config.in no

1 (bis) Working directories Makefile.common no
8 Flags Makefile.common no
9 Verbosing Makefile.common no
10 Shell commands Makefile.common no
11 Command pretty printing Makefile.common no
12 Tests Makefile.common no
13 Generic rules Makefile.generic no
14 Source files generation Makefile.generating no
15 Global plug-in variables Makefile no
16 Additional global variables Makefile no
17 Main targets Makefile no
18 Coverage Makefile no
19 Ocamlgraph Makefile no
20 Frama-C Kernel Makefile no
21 Plug-in sections Makefile yes Section 4.3
22 Generic variables Makefile no
23 Toplevel Makefile no
24 GUI Makefile no
25 Standalone obfuscator Makefile no
26 Tests Makefile no
27 Emacs tags Makefile no
28 Documentation Makefile no
29 Installation Makefile yes Not written yet.
30 File headers: license policy Makefile yes
31 Makefile rebuilding Makefile no
32 Cleaning Makefile no
33 Depend Makefile no
34 ptests Makefile no
35 Source distribution Makefile no

Figure 5.3: Sections of Makefile.config.in, Makefile.common and Makefile.

117



CHAPTER 5. REFERENCE MANUAL

Copying to foo

while executing
$ make foo VERBOSEMAKE=yes

prints
cp -f bar foo

If one of the two commands is missing for the target foo, either make foo or make foo
VERBOSEMAKE=yes will not work as expected.

12. Tests defines a generic template for testing plug-ins.

13. Generic rules contains rules in order to automatically produces different kinds of files
(e.g. .cm[iox] from .ml or .mli for OCaml files)

14. Source files generation contains rules for generating files that depend on the con-
figuration and on which the main Makefile depends on. They are put in an auxiliary
Makefile.generating to avoid unnecessary rebuilds.

15. Global plug-in variables declares some plug-in specific variables used throughout
the makefile.

16. Additional global variables declares some other variables used throughout the make-
file.

17. Main targets provides the main rules of the makefile. The most important ones
are top, byte and opt which respectively build the Frama-C interactive, bytecode and
native toplevels.

18. Coverage defines how compile the eponymous library.

19. Ocamlgraph defines how compile the eponymous library.

20. Frama-C Kernel provides variables and rules for the Frama-C kernel. Each part is
described in specific sub-sections.

21. After Section “Kernel”, there are several sections corresponding to plug-ins (see
Section 5.2.3). This is the part that a plug-in developer has to modify in order to
add compilation directives for its plug-in.

22. Generic variables provides variables containing files to be linked in different contexts.

23. Toplevel provides rules for building the files of the form bin/toplevel.*.

24. GUI provides rules for building the files of the form bin/viewer.*

25. Standalone obfuscator provides rules for building the Frama-C obfuscator.

26. Tests provides rules to execute tests. make tests takes care of generating the appropri-
ate environment and launching ptests (see Section 4.5) for all test suites of the kernel
and enabled plugins. It is possible to pass options to ptests through the PTESTS_OPTS
environment variable.

118



5.2. MAKEFILES

27. Emacs tags provides rules which generate emacs tags (useful for a quick search of
OCaml definitions).

28. Documentation provides rules generating Frama-C source documentation (see Sec-
tion 4.22).

29. Installation provides rules for installing different parts of Frama-C.

30. File headers: license policy provides variables and rules to manage the Frama-C
license policy.

31. Makefile rebuilding provides rules in order to automatically rebuild Makefile and
configure when required.

32. Cleaning provides rules in order to remove files generated by makefile rules.

33. Depend provides rules which compute Frama-C source dependencies.

34. Ptests provides rules in order to build ptests (see Section 4.5).

35. Source distribution provides rules usable for distributing Frama-C.

5.2.3 Variables of Makefile.dynamic

Figures 5.4 and 5.5 presents all the variables that can be set before including
Makefile.dynamic (see Section 4.4). Details are provided below.

• Variable PLUGIN_NAME is the module name of the plug-in.

This name must be capitalized (as is each OCaml module name). It must be distinct
from all other visible modules in the plugin directory, or in the Frama-C kernel.

• Variable PLUGIN_DIR is the directory containing plug-in source files. It is usually set to
src/plugins/plugin where plugin is the plug-in name.

• Variable PLUGIN_ENABLE must be set to yes if the plug-in has to be compiled. It is
usually set to @plugin_ENABLE@ provided by configure.in where plugin is the plug-in
name.

• Variable PLUGIN_HAS_META must be set to yes if plug-in plugin gets a META file describ-
ing its packaging. Unless PLUGIN_HAS_META is yes, the following variables are used to
generate a suitable META:

– PLUGIN_VERSION short text with plugin version number. Default value is Frama-
C’s version number.

– PLUGIN_REQUIRES packages that must be loaded before the plugin. By default,
there is no such package.

– PLUGIN_DEPENDENCIES other plug-ins that must be loaded before the plugin. By
default, there is no dependency.

Remark: the plugin package name is defined to be frama-c-plugin with lowercased
plugin name. You can refer to it directly with ocamlfind.

119



CHAPTER 5. REFERENCE MANUAL

Kind Name Specification

Plug-in
Declaration

PLUGIN_NAME Module name of the plug-in
PLUGIN_DIR Directory containing plug-in source files

PLUGIN_ENABLE Whether to compile the plug-in
PLUGIN_HAS_META Provided META (default: no)

Packaging
(for META)

PLUGIN_DESCRIPTION Short description (defaults to name)
PLUGIN_VERSION Version number (defaults to Frama-C’s)

PLUGIN_DEPENDENCIES Dependencies to other plug-ins
PLUGIN_REQUIRES Dependencies to ocamlfind packages

Object Files

PLUGIN_CMO Object files (without .cmo)
PLUGIN_CMI Standalone interfaces (without .cmi)

PLUGIN_GUI_CMO Additional objects files for the GUI
PLUGIN_TYPES_CMO External .cmo files

Compilation
flags

PLUGIN_BFLAGS Plug-in specific flags for ocamlc
PLUGIN_OFLAGS Plug-in specific flags for ocamlopt

PLUGIN_EXTRA_BYTE Additional bytecode files to link against
PLUGIN_EXTRA_OPT Additional native files to link against
PLUGIN_EXTRA_DIRS Additional directories containing source

files, relative to the root directory of the
plugin (i.e. PLUGIN_DIR)

PLUGIN_LINK_BFLAGS Plug-in specific flags for linking with
ocamlc

PLUGIN_LINK_OFLAGS Plug-in specific flags for linking with
ocamlopt

PLUGIN_LINK_GUI_BFLAGS Plug-in specific flags for linking a GUI
with ocamlc

PLUGIN_LINK_GUI_OFLAGS Plug-in specific flags for linking a GUI
with ocamlopt

Figure 5.4: Standard parameters of Makefile.dynamic.

120



5.2. MAKEFILES

• Variables PLUGIN_CMO and PLUGIN_CMI are respectively .cmo plug-in files and .cmi files
without corresponding .cmo plug-in files. For each of them, do not write their file path
nor their file extension: they are automatically added ($(PLUGIN_DIR)/f.cm[io] for
a file f).

• Variable PLUGIN_TYPES_CMO is the .cmo plug-in files which do not belong to
$(PLUGIN_DIR). They usually belong to src/plugins/plugin_types where plugin is
the plug-in name (see Section 4.9.2). Do not write file extension (which is .cmo): it is
automatically added.

• Variable PLUGIN_GUI_CMO is the .cmo plug-in files which have to be linked with the
GUI (see Section 4.21). As for variable PLUGIN_CMO, do not write their file path nor
their file extension.

• Variables of the form PLUGIN_*_FLAGS are plug-in specific flags for ocamlc, ocamlopt,
ocamldep or ocamldoc.

• Variable PLUGIN_GENERATED is files which must be generated before computing plug-
in dependencies. In particular, this is where .ml files generated by ocamlyacc and
ocamllex must be placed if needed.

• Variable PLUGIN_DEPENDS is the other plug-ins which must be compiled before the
considered plug-in.

Using this variable is deprecated: you should consider to use PLUGIN_DEPENDENCIES
instead.

• Variable PLUGIN_UNDOC is the source files for which no documentation is provided. Do
not write their file path which is automatically set to $(PLUGIN_DIR).

• Variable PLUGIN_TYPES_TODOC is the additional source files to document with the plug-
in. They usually belong to src/plugins/plugin_types where plugin is the plug-in
name (see Section 4.9.2).

• Variable PLUGIN_INTRO is the text file to append to the plug-in documentation intro-
duction. Usually this file is doc/code/intro_plugin.txt for a plug-in plugin. It can
contain any text understood by ocamldoc.

• Variable PLUGIN_HAS_EXT_DOC is set to yes if the plug-in has its own reference manual.
It is supposed to be a pdf file generated by make in directory doc/$(PLUGIN_NAME)

• Variable PLUGIN_NO_TEST must be set to yes if there is no specific test directory for
the plug-in.

• Variable PLUGIN_TESTS_DIRS is the directories containing plug-in tests. Its default
value is tests/$(notdir $(PLUGIN_DIR))).

• Variable PLUGIN_TESTS_LIB contains the .ml plug-in specific files used by plug-in
tests. Note that if you wish to have these files compiled before launching the
tests (as opposed to e.g. compile them via an EXECNOW directive in a test file),
you should add the corresponding .cmo and .cmxs files as pre-requisite of the
$(PLUGIN_DIR)/tests/ptests_config target.

121



CHAPTER 5. REFERENCE MANUAL

Kind Name Specification

Dependencies
PLUGIN_DEPFLAGS Plug-in specific flags for

ocamldep
PLUGIN_GENERATED Plug-in files to be generated be-

fore running ocamldep
PLUGIN_DEPENDS Other plug-ins to be compiled be-

fore the considered one
no

Documentation

PLUGIN_DOCFLAGS Plug-in specific flags for
ocamldoc

PLUGIN_UNDOC Source files with no provided doc-
umentation

PLUGIN_TYPES_TODOC Additional source files to docu-
ment

PLUGIN_INTRO Text file to append to the plug-in
introduction

PLUGIN_HAS_EXT_DOC Whether the plug-in has an exter-
nal pdf manual

Testing

PLUGIN_NO_TESTS Whether there is no plug-in spe-
cific test directory

PLUGIN_TESTS_DIRS Directories containing tests
PLUGIN_TESTS_DIRS_DEFAULT tests to be included in the default

test suite (all directories by de-
fault)

no

PLUGIN_TESTS_LIBS Specific .ml files used by plug-in
tests

PLUGIN_NO_DEFAULT_TEST Whether to include tests in de-
fault test suite.

PLUGIN_INTERNAL_TEST Whether the test suite of the
plug-in is located in Frama-C’s
own tests directory

PLUGIN_PTESTS_OPTS Plug-in specific options to ptests

Distribution
PLUGIN_DISTRIBUTED_BIN Whether to include the plug-in in

binary distribution
no

PLUGIN_DISTRIBUTED Whether to include the plug-in in
source distribution

no

PLUGIN_DISTRIB_EXTERNAL Additional files to be included in
the distribution

no

Figure 5.5: Special parameters of Makefile.dynamic.

122



5.2. MAKEFILES

• Variable PLUGIN_NO_DEFAULT_TEST indicates whether the test directory of the plug-in
should be considered when running Frama-C default test suite. When set to a non-empty
value, the plug-in tests are run only through make $(PLUGIN_NAME)_tests.

• Variable PLUGIN_INTERNAL_TEST indicates whether the tests of the plug-in are included
in Frama-C’s own tests directory. When set to a non-empty value, the tests are searched
there. When unset, tests are assumed to be in the tests directory of the plugin
main directory itself. Having the tests of a plugin inside Frama-C’s own tests suite is
deprecated. Plugins should be self-contained.

• Variable PLUGIN_PTESTS_OPTS allows to give specific options to ptests when run-
ning the tests. It comes in addition to PTESTS_OPTS (see 5.2.2§26). For instance,
PLUGIN_PTESTS_OPTS:=-j 1 will deactivate parallelization of tests in case the plugin
does not support concurrent runs.

• Variable PLUGIN_DISTRIB_BIN indicates whether the plug-in should be included in a
binary distribution.

• Variable PLUGIN_DISTRIBUTED indicates whether the plug-in should be included in a
source distribution.

• Variable PLUGIN_DISTRIB_EXTERNAL is the list of files that should be included within
the source distribution for this plug-in. They will be put at their proper place for a
release.

As previously said, the above variables are set before including Makefile.dynamic in order
to customize its behavior. They must not be use anywhere else in the Makefile. In order
to deal with this issue, for each plug-in p, Makefile.dynamic provides some variables which
may be used after its inclusion defining p. These variables are listed in Figure 5.6. For each
variable of the form p_VAR, its behavior is exactly equivalent to the value of the parameter
PLUGIN_VAR for the plug-in p1.

5.2.4 .Makefile.user

The following variables can be set inside .Makefile.user:

• FRAMAC_PARALLEL: the contents of this variable are passed to ptests when it is called
by Frama-C’s Makefile. This variable can be used to override the default value of 4.
Example value: -j 6

• OCAML_ANNOT_OPTION: this variable of the Makefile can be overridden in
.Makefile.user. By default, it is set to -annot -bin-annot. Users of Merlin do
not need -annot.
Example value: -bin-annot

• FRAMAC_USER_FLAGS: the contents of this variable are passed to ocamlc and ocamlopt,
after the standard configuration options coming from the Makefile. It can be used to
tweak the warnings emitted by OCaml, and whether they are emitted as errors.

1Variables of the form p_*CMX have no PLUGIN_*CMX counterpart but their meanings should be easy to
understand.

2plugin is the module name of the considered plug-in (i.e. as set by $(PLUGIN_NAME)).

123



CHAPTER 5. REFERENCE MANUAL

Kind Name2 Remarks
Usual information plugin_DIR

Source files

plugin_CMO
plugin_CMI
plugin_CMX

plugin_TYPES_CMO
plugin_TYPES_CMX

Targets

plugin_TARGET_CMO
plugin_TARGET_CMX
plugin_TARGET_CMA Empty if plug-in does not have exter-

nal dependencies
plugin_TARGET_CMXA Empty if plug-in does not have exter-

nal dependencies
plugin_TARGET_CMXS Empty if plugin is not dynamic

plugin_TARGET_GUI_CMO

Empty if there is no plugin-
specific GUI code

plugin_TARGET_GUI_CMX
plugin_TARGET_GUI_CMA
plugin_TARGET_GUI_CMXA
plugin_TARGET_GUI_CMXS

Compilation flags

plugin_BFLAGS
plugin_OFLAGS

plugin_LINK_BFLAGS
plugin_LINK_OFLAGS

plugin_LINK_GUI_BFLAGS
plugin_LINK_GUI_OFLAGS

Dependencies plugin_DEPFLAGS
plugin_GENERATED

Documentation plugin_DOCFLAGS
plugin_TYPES_TODOC

Testing plugin_TESTS_DIRS
plugin_TESTS_LIB

Figure 5.6: Variables defined by Makefile.dynamic.

124



5.3. PTESTS

Example value: -warn-error -26-27 (do not consider warnings 26 and 27 as fatal
errors)

• FRAMAC_USER_MERLIN_FLAGS: the contents of this variable are passed to a directive FLG,
inside the .merlin file generated for Frama-C. (Through the merlin target of the main
Makefile.) It can be used to tailor Merlin to your needs. See ocamlmerlin -help for
the list of flags.

5.2.5 Makefile.dynamic

Not written yet: please report as “feature request” on http: // bts. frama-c. com if you
really need this section.

5.3 Ptests

5.3.1 Pre-defined macros for tests commands

Ptests pre-defines a certain number of macros for each test about to be run. Figure 5.7 gives
their definition.

Name Expansion
frama-c path to Frama-C executable
PTEST_CONFIG either the empty string or _ followed by the name of the

current alternative configuration (see section 4.5.3).
PTEST_DIR current test suite directory
PTEST_RESULT current result directory
PTEST_FILE path to the current test file
PTEST_NAME basename of the current test file (without suffix)
PTEST_NUMBER rank of current test in the test file. There are in fact two in-

dependent numbering schemes: one for EXECNOW commands
and one for regular tests (if more than one OPT).

Figure 5.7: Predefined macros for ptests

5.4 Profiling with Landmarks

Landmarks3 is a library for “quick and dirty” profiling of OCaml programs. It allows the
insertion of annotations in the code to enable profiling of specific parts of it, but also an
automatic mode, in which every function call is instrumented. The Frama-C configure file
is setup to enable usage of this library when it is available (the usual way to install it is via
the landmarks opam package).
For quick usage of the library:

• ensure that the configure script detected it (there should be a line checking for
Landmarks... found);

3https://github.com/LexiFi/landmarks

125

http://bts.frama-c.com
https://github.com/LexiFi/landmarks


CHAPTER 5. REFERENCE MANUAL

• enable instrumentation when compiling Frama-C’s files, that is, when running make, by
setting the environment variable OCAML_LANDMARKS. For instance, to enable automatic
instrumentation of every Frama-C function (note: this increases compilation time of
Frama-C), run:

OCAML_LANDMARKS=auto make

• enable instrumentation during execution of Frama-C, again using OCAML_LANDMARKS.
Note that the auto parameter here is implicit if you enabled it on the previous step.
For instance, run:

OCAML_LANDMARKS= bin/frama-c [files] [options]

Commonly used options include output=landmarks.log to output the result to a file instead
of stderr. Check https://github.com/LexiFi/landmarks for its documentation.

126

https://github.com/LexiFi/landmarks


Appendix A

Changes

This chapter summarizes the major changes in this documentation between each Frama-C
release, from newest to oldest.

23.0 Vanadium

• Testing: Document new directive EXIT.

22.0 Titanium

• Testing: Document new directives TIMEOUT and NOFRAMAC

21.0 Scandium

• Configure: Documentation of configure_pkg, plugin_require_pkg and
plugin_use_pkg macros.

20.0 Calcium

• Testing: Documentation of the new directive MODULE.

19.0 Potassium

• ACSL Extension: Document new status flag for registration functions

• Testing: Document usage of @@ in a directive

• Profiling with Landmarks: New section

127



APPENDIX A. CHANGES

18.0 Argon

• Logging Services: Document error and failure behaviors.

• ACSL Extensions: New extension categories, for global and plain code annotations

Chlorine-20180501

• Logging Services: Introduction of warning categories

Sulfur-20171101

• Tutorial: Update and complete the Hello plug-in section along with making it available
online.

• Testing: Explain the appropriate way to handle compilation of .ml scripts during tests

• Makefiles: Remove references to obsolete Makefile.plugin file

Phosphorus-20170501

• Makefiles: Update overview of Makefiles.

• ACSL Extensions: Update documentation after refactoring of ACSL extensions.

• Machine model: fully new section.

Silicon-20161101

• ACSL Extensions: Updated documentation for newly introduced loop extensions.

Aluminium-20160501

• Tutorial: Plugin Cfg renamed to ViewCfg; minor fixes.

• Ptests: Documentation of the new directive EXEC.

• Ptests: Documentation for sharing directives amongst ptests configurations

• Makefiles: Documentation for install:: target in dynamic plugins

• Makefiles: Documentation of exported TARGET_* variables

• Makefiles: Documentation of new option PLUGIN_EXTRA_DIRS

• Ptests: New option -gui

128



Magnesium-20151001

• License Policy: remove this section.

• Ptests: New configuration directive LOG and new macro PTEST_RESULT

• File Tree: remove this section, now subsumed by the new Chapter on Software Archi-
tecture and by the API documentation.

• File Tree Overview: remove this useless section.

• Software Architecture: rewrite the whole chapter.

• No more PLUGIN_HAS_MLI.

Sodium-20150201

• Type Library: document Datatype.Serializable_undefined.

• Command Line Options: document Parameter_sig.Kernel_function_set.

• Configure.in: warn about using Frama-C macros within conditionals

• Logical Annotations: document ACSL extended clauses mechanism (added sec-
tion 4.19).

• Tutorial: fix hello_world.ml.

Neon-20140301

• Reference Manual: update list of main kernel modules.

• Logical Annotations: document module Property.

• Command Line Options: update according to kernel changes that split the module
Plugin into several modules.

• Architecture, Plug-in Registration and Access and Reference Manual: docu-
ment registration of a plug-in through a .mli file.

• Makefiles: introducing Makefile.generic.

• Testing: MACRO configuration directive.

Fluorine-20130601

• Tutorial: fully rewritten.

• Architecture and Reference Manual: remove references to Cilutil module.

129



APPENDIX A. CHANGES

Oxygen-20121001

• Makefile WARN_ERROR_ALL variable.

• Log: Debug category (˜dkey argument).

• Visitor: DoChildrenPost action.

• Testing: document the need for directories to store result and oracles.

• Project Management System: Fine tuning of AST dependencies.

• Testing: added PTESTS_OPTS and PLUGIN_PTESTS_OPTS Makefile’s variables.

• Type: document the type library.

• Logical Annotations: fully updated.

• Reference Manual: update kernel files.

• Testing: merge parts in Advanced Plug-in Development and in Reference Manual.

• Website: refer to CEA internal documentation.

• Command Line Options: explain how to modify the default behavior of an option.

• Command Line Options: fully updated.

• Project Management System: fully updated.

• Plug-in Registration and Access: Type replaced by Datatype and document labeled
argument journalize.

• Configure.in: updated.

• Plug-in General Services: updated.

• Software Architecture: Type is now a library, not just a single module.

Nitrogen-20111001

• Tutorial of the Future: new chapter for preparing a future tutorial.

• Types as first class values: links to articles.

• Tutorial: kernel-integrated plug-ins are now deprecated.

• Visitors: example is now out-of-date.

Carbon-20110201

Unchanged.

130



Carbon-20101201-beta1

• Visitors: update example to new kernel API.

• Documentation: external plugin API documentation.

• Visitors: fix bug (replace DoChildrenPost by ChangeDoChildrenPost), change se-
mantics wrt vstmt_aux.

Carbon-20101201-beta1

• Very Important Preliminary Warning: adding this very important chapter.

• Tutorial: fix bug in the ‘Hello World’ example.

• Testing: updated semantics of CMD and STDOPT directives.

• Initialization Steps: updated according to new options -then and -then-on and to
the new ‘Files Setting’ stage.

• Visitors: example updated

We list changes of previous releases below.

Boron-20100401

• Configure.in: updated

• Tutorial: the section about kernel-integrated plug-in is out-of-date

• Project: no more rehash in datatypes

• Initialisation Steps: fixed according to the current implementation

• Plug-in Registration and Access: updated according to API changes

• Documentation: updated and improved

• Introduction: is aware of the Frama-C user manual

• Logical Annotations: fully new section

• Tutorial: fix an efficiency issue with the Makefile of the Hello plug-in

Beryllium-20090902

• Makefiles: update according to the new Makefile.kernel

131



APPENDIX A. CHANGES

Beryllium-20090901

• Makefiles: update according to the new makefiles hierarchy

• Writing messages: fully documented

• Initialization Steps: the different stages are more precisely defined. The implementa-
tion has been modified to take into account specificities of dynamically linked plug-ins

• Project Management System: mention value descr in Datatype

• Makefile.plugin: add documentation for additional parameters

Beryllium-20090601-beta1

• Initialization Steps: update according to the new implementation

• Command Line Options: update according to the new implementation

• Plug-in General Services: fully new section introducing the new module Plugin

• File Tree: update according to changes in the kernel

• Makefiles: update according to the new file Makefile.dynamic and the new file
Makefile.config.in

• Architecture: update according to the recent implementation changes

• Tutorial: update according to API changes and the new way of writing plug-ins

• configure.in: update according to changes in the way of adding a simple plug-in

• Plug-in Registration and Access: update according to the new API of module Type

Lithium-20081201

• Changes: fully new appendix

• Command Line Options: new sub-section Storing New Dynamic Option Values

• Configure.in: compliant with new implementations of configure_library and
configure_tool

• Exporting Datatypes: now embedded in new section Plug-in Registration and Access

• GUI: update, in particular the full example has been removed

• Introduction: improved

• Plug-in Registration and Access: fully new section

• Project: compliant with the new interface

• Reference Manual: integration of dynamic plug-ins

132



• Software architecture: integration of dynamic plug-ins

• Tutorial: improve part about dynamic plug-ins

• Tutorial: use Db.Main.extend to register an entry point of a plug-in.

• Website: better highlighting of the directory containing the html pages

Lithium-20081002+beta1

• GUI: fully updated

• Testing: new sub-section Alternative testing

• Testing: new directive STDOPT

• Tutorial: new section Dynamic plug-ins

• Visitor: ChangeToPost in sub-section Action Performed

Helium-20080701

• GUI: fully updated

• Makefile: additional variables of Makefile.plugin

• Project: new important note about registration of internal states in Sub-section In-
ternal State: Principle

• Testing: more precise documentation in the reference manual

Hydrogen-20080502

• Documentation: new sub-section Website

• Documentation: new ocamldoc tag @plugin developer guide

• Index: fully new

• Project: new sub-section Internal State: Principle

• Reference manual: largely extended

• Software architecture: fully new chapter

Hydrogen-20080501

• First public release

133





BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Jean-Christophe Filliâtre, Thierry Hubert, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Specification Language.
Version 1.8, March 2014.

[2] Patrick Baudin and Anne Pacalet. Slicing plug-in. http://frama-c.com/slicing.html.

[3] Loïc Correnson, Pascal Cuoq, Florent Kirchner, Armand Puccetti, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual, February 2015. http:
//frama-c.com/download/frama-c-user-manual.pdf.

[4] Loïc Correnson, Zaynah Dargaye, and Anne Pacalet. Frama-C’s WP plug-in, February
2015. http://frama-c.com/download/frama-c-wp-manual.pdf.

[5] Loïc Correnson and Julien Signoles. Combining Analysis for C Program Verification. In
Formal Methods for Industrial Critical Systems (FMICS), August 2012.

[6] Pascal Cuoq, Damien Doligez, and Julien Signoles. Lightweight Typed Customizable
Unmarshaling. ML Workshop’11, September 2011.

[7] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C, A Program Analysis Perspective. In the 10th International
Conference on Software Engineering and Formal Methods (SEFM 2012), volume 7504
of LNCS, pages 233–247. Springer, 2012.

[8] Pascal Cuoq and Julien Signoles. Experience Report: OCaml for an industrial-strength
static analysis framework. In Proceedings of International Conference of Functional
Programming (ICFP’09), pages 281–286, New York, NY, USA, September 2009. ACM
Press.

[9] Pascal Cuoq, Boris Yakobowski, and Virgile Prevosto. Frama-C’s value analysis plug-in,
February 2015. http://frama-c.com/download/frama-c-eva-manual.pdf.

[10] Jacques Garrigue, Benjamin Monate, Olivier Andrieu, and Jun Furuse. LablGTK2.
http://lablgtk.forge.ocamlcore.org.

[11] Philippe Hermann and Julien Signoles. Frama-C’s RTE plug-in, April 2013.
http://frama-c.com/download/frama-c-rte-manual.pdf.

[12] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. Formal Aspects of Computing,
pages 1–37, 2015. Extended version of [7].

135

http://frama-c.com/slicing.html
http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.com/download/frama-c-eva-manual.pdf
http://lablgtk.forge.ocamlcore.org
http://frama-c.com/download/frama-c-rte-manual.pdf


BIBLIOGRAPHY

[13] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system. http://caml.inria.fr/pub/docs/manual-ocaml/index.
html.

[14] Donald Michie. Memo functions: a language feature with "rote-learning" properties.
Research Memorandum MIP-R-29, Department of Machine Intelligence & Perception,
Edinburgh, 1967.

[15] Donald Michie. Memo functions and machine learning. Nature, 218:19–22, 1968.

[16] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of C Programs. In
CC ’02: Proceedings of the 11th International Conference on Compiler Construction,
pages 213–228, London, UK, 2002. Springer-Verlag.

[17] Julien Signoles. Foncteurs impératifs et composés: la notion de projet dans Frama-C. In
Hermann, editor, JFLA 09, Actes des vingtièmes Journées Francophones des Langages
Applicatifs, volume 7.2 of Studia Informatica Universalis, pages 245–280, 2009. In French.

[18] Julien Signoles. Une bibliothèque de typage dynamique en OCaml. In Hermann, editor,
JFLA 11, Actes des vingt-deuxièmes Journées Francophones des Langages Applicatifs,
Studia Informatica Universalis, pages 209–242, January 2011. In French.

[19] Nicolas Stouls and Virgile Prevosto. Frama-C’s Aoraï plug-in, April 2013.
http://frama-c.com/download/frama-c-aorai-manual.pdf.

136

http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://frama-c.com/download/frama-c-aorai-manual.pdf


LIST OF FIGURES

List of Figures

2.1 Plug-in Integration Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Control flow graph for file test.c. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Control flow graph colored with reachability information. . . . . . . . . . . . 32
2.4 CFG plug-in architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Frama-C Architecture Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 ptests options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Directives in configuration headers of test files. . . . . . . . . . . . . . . . . . 111
4.3 Representation of the Frama-C State. . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 Interaction between the project library and your registered global data. . . . 112
4.5 Indices of AST nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Sections of configure.in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Relationship between the Makefiles . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 Sections of Makefile.config.in, Makefile.common and Makefile. . . . . . 117
5.4 Standard parameters of Makefile.dynamic. . . . . . . . . . . . . . . . . . . . 120
5.5 Special parameters of Makefile.dynamic. . . . . . . . . . . . . . . . . . . . . 122
5.6 Variables defined by Makefile.dynamic. . . . . . . . . . . . . . . . . . . . . . 124
5.7 Predefined macros for ptests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

137





INDEX

Index

.Makefile.plugin.generated, 114

.Makefile.user, 115, 116, 123

Abstract Interpretation, 44, 108
Abstract_interp, 108
Acsl_extension

register_behavior, 104
register_code_annot, 104
register_code_annot_next_both, 104
register_code_annot_next_loop, 104
register_code_annot_next_stmt, 104
register_global, 104

Annotation, 99, 102
Annotations, 43, 102

add_assert, 101
Architecture, 41

Plug-in, 14
AST, 77, 98, 99, 102

Copying, 100, 101
Modification, 45, 83, 99, 100
Sharing, see Sharing

Ast
add_monotonic_state, 81
get, 30, 77
mark_as_changed, 81
mark_as_grown, 81
self, 37, 83, 101

Boot, 88

Cabs, 44
file, 90

Cabs2cil
convFile, 90

check_plugin, 46
Cil, 98, 99

cilVisitor, 98, 99
behavior, 101
current_kinstr, 101
fill_global_tables, 100
get_filling_actions, 100, 101
vexpr, 101

vfile, 27
vglob, 99
vlogic_ctor_info_decl, 99
vlogic_ctor_info_use, 99
vlogic_info_decl, 99
vlogic_info_use, 99
vlogic_type_info_decl, 99
vlogic_type_info_use, 99
vlogic_var_decl, 99
vlogic_var_use, 99
voffs, 99
vstmt, 99
vvdec, 99
vvrbl, 99

copy_visit, 100, 101
dummyStmt, 75
get_kernel_function, 101
get_original_varinfo, 100
get_stmt, 101
get_varinfo, 100
inplace_visit, 100
lzero, 101
reset_behavior_varinfo, 100
set_varinfo, 100
visitAction, 99
ChangeDoChildrenPost, 100, 101
ChangeTo, 99, 101
ChangeToPost, 99
DoChildren, 28, 31, 99, 101
DoChildrenPost, 27, 28, 100
JustCopy, 28, 99, 101
JustCopyPost, 100
SkipChildren, 28, 99, 101

visitCilAstType, 99
visitCilFile, 99
visitCilFileCopy, 99
visitCilFileSameGlobals, 99
visitor_behavior, 100

Cil_datatype, 68
Fundec
Hashtbl, 37

139



INDEX

Stmt
equal, 68
Hashtbl, 79
pretty, 68, 75
t, 75
ty, 75, 76

Varinfo, 79
Cil_state_builder, 78, 79

Stmt_hashtbl, 79
Cil_types, 43

acsl_extension, 104
acsl_extension_kind, 104
AExtended, 103
behavior, 103
b_extended, 103

binop
Div, 101
Mod, 101

compinfo, 100, 112
Dextended, 103
enuminfo, 100, 112
exp_node
BinOp, 101

ext_category, 103
ext_code_annot_context, 103
fieldinfo, 100, 112
file, 90, 98–101
fundec, 31
GFun, 28
global, 99
logic_ctor_info, 99
logic_info, 99, 100, 112
logic_type_info, 99
logic_var, 99, 100, 112
mach, 90
offset, 99
relation
Rneq, 101

stmt, 100, 112
stmtkind
Block, 27
Break, 27
Continue, 27
Goto, 27
If, 27
Instr, 27
Loop, 27
Return, 27
Switch, 27

TryExcept, 27
TryFinally, 27
UnspecifiedSequence, 27

typeinfo, 100, 112
varinfo, 79, 99, 100, 112

clean-install, 52
Cmdline, 87, 88

Exit, 89
is_going_to_load, 89
nop, 89
run_after_configuring_stage, 89
run_after_early_stage, 88
run_after_exiting_stage, 89
run_after_extended_stage, 80, 88
run_after_loading_stage, 89
run_after_setting_files, 89
run_during_extending_stage, 88
stage
Configuring, 89
Early, 88
Exiting, 89
Extended, 88
Extending, 88
Loading, 89

Command Line, 18, 29
-machdep, 91
-ocode, 67
Option, 61, 84, 85
Parsing, 87

configure.ac, 49
configure.in, 45, 113

check_plugin, 47
check_plugin_dependencies, 50
configure_library, 47
configure_pkg, 47
configure_tools, 47
ENABLE_plugin, 47
FORCE_plugin, 47
HAS_library, 48
HAS_OCAML_library, 48
LIB_SUFFIX, 48
OBJ_SUFFIX, 48
plugin_require, 49
plugin_require_external, 49
plugin_require_pkg, 48
plugin_use, 49
plugin_use_external, 49
plugin_use_pkg, 48
REQUIRE_plugin, 47

140



INDEX

SELECTED_library, 48
USE_plugin, 47

Consistency, 45, 77, 78, 84, 99, 100
Context Switch, 81, 84
CP, 116

Dataflow, 108
Datatype, 68, 79, 81

Library, 67
Datatype, 67, 68

Bool, 38
bool, 67
char, 67
func, 74, 76
func2, 67
func3, 76
Function, 71
identity, 68
Int, 70
int, 67
List, 70, 71
list, 67
Make, 68–70
never_any_project, 68
Pair, 79
Polymorphic, 70
Polymorphic2, 70
Polymorphic3, 70
Polymorphic4, 70
pp_fail, 69
Ref, 82
S, 68, 82
S_with_collections, 68
Serializable_undefined, 70, 75
String, 37, 68
Hashtbl, 70
Set, 68

string, 67
Undefined, 69
undefined, 69
unit, 74, 76

Db, 43, 72, 73, 74, 110
From.self, 80
Impact.compute_pragmas, 73
Main, 15
extend, 14, 16, 17, 21, 23, 26, 61, 87,
89, 101

progress, 109
Properties, 103
Value

compute, 79, 83
get_stmt_state, 31
is_computed, 31, 39, 78, 83
is_reachable, 31
self, 37, 79, 80, 84

Design, 15
main_window_extension_points, 109
register_source_selector, 32

register_extension, 32, 109
Documentation, 109, 119

Kernel, 109
Plug-in, see Plug-in Documentation
Source, 109
Tags, 110

Dot, 49
Dynamic, 15, 43, 74, 110

get, 74, 76
Parameter, 86
Bool, 86

register, 74, 74, 75

Emitter, 85
Emitter

create, 102, 103
Entry Point, 78
Entry point, 14
Equality

Physical, 81, 82
Structural, 82

FCHashtbl, 43
File

add_code_transformation_after_cleanup, 90
add_code_transformation_before_cleanup, 90
create_project_from_visitor, 101
init_from_c_files, 98
init_from_cmdline, 98
init_project_from_cil_file, 83, 98
init_project_from_visitor, 83, 98
must_recompute_cfg, 90
new_file_type, 90
new_machdep, 90

FRAMAC_INTERNAL, 52
FRAMAC_LIBDIR, 52
FRAMAC_SHARE, 19, 20, 22, 34, 51
FRAMAC_SRC_DIRS, 73, 116
From, 80
From_parameters

ForceCallDeps, 86
Frontc

141



INDEX

add_syntactic_transformation, 90

Globals, 43
Functions
get, 32

set_entry_point, 78
GnomeCanvas, 49
Gtk_helper

graph_window, 32
GUI, 15, 108

Hashtable, 78, 79
Header, 119
Hello, 45
Highlighting, 109
Hook, 14

index.html, 109, 110
Initialization, 74, 87, 88
install, 52
install-doc-code, 110

Journal, 15
Journalisation, 68
Journalization, 36, 74, 88, 89

Kernel, 41, 81, 118
Internals, 44
Services, 43

Kernel, 85
CodeOutput, 67
SafeArrays, 87
Unicode, 86

Kernel_function, 43, 79
dummy, 75
get_definition, 32
Make_Table, 80
pretty, 75
t, 75, 79
ty, 75, 76

Kind, 79

Lablgtk, 48, 49, 109
Lablgtksourceview2, 48
Landmarks, 125
Lattice, 108
Lattice_type, 108
Library, 46

Configuration, 47, 113, 114
Dependency, 48

License, 119

Linking, 87, 88
Lmap, 108
Lmap_bitwise, 108
Loading, 78, 83, 89
Location, 107
Locations, 108

enumerate_valid_bits, 108
Location, 108
location, 108
Location_Bits, 108
Location_Bytes, 108
Zone, 108

Log
add_listener, 65
log_channel, 66
Messages, 61, 62
abort, 63
debug, 62
error, 63
failure, 63
fatal, 63
feedback, 62
log, 65
register_warn_category, 64
result, 62
set_warn_status, 64
verify, 63
warn_category, 64
warning, 63
with_log, 65

new_channel, 66
print_delayed, 67
print_on_output, 66
set_echo, 65
set_output, 66
with_log_channel, 66

Logging, see Messages
Logic_const, 103

new_acsl_extension, 104
prel, 101

Logic_typing
typing_context, 104

Logic_utils, 103
expr_to_term, 101

Machine model, 90
Makefile, 50, 109, 110, 114, 115, 115, 116
Makefile.clean, 115
Makefile.common, 114, 116
Makefile.config, 114

142



INDEX

Makefile.config.in, 114, 115, 116
Makefile.dynamic, 15, 19, 20, 22, 34, 51, 51,

72, 114, 115, 119
Makefile.dynamic_config, 114
Makefile.dynamic_config.external, 114
Makefile.dynamic_config.internal, 114
Makefile.generating, 114, 115, 116
Makefile.generic, 114, 116
Makefile.plugin.generated, 115
Makefile.plugin.template, 114
Marshaling, 68
memo, 79
Memoization, 77, 79, 80
Merlin, 123, 125
Messages, 61
Module Initialization, see Initialization

Occurrence, 46, 109
Oracle, 53, 54, 57

Parameter, 77
Parameter_customize, 87

set_negative_option_name, 87
Parameter_sig

Bool, 85, 85
Builder, 85
Empty_string, 85
False, 85, 85
Int, 85
Kernel_function_set, 85, 86
String, 85
String_set, 85
True, 85
Zero, 85

Int, 85
Kernel_function_set, 86
S, 85

Parameter_state
get_selection, 84

Parameters, 85
Pdg, 80
Platform, 114
Plug-in, 13, 43

Access, 74
API, 36, 74
Architecture, 14
Command Line Options, 18, 29
Compilation, 118
Configure, 36
Dependency, 46, 46, 49, 114

Directory, 109, 119
Distribution, 123
Documentation, 24, 109, 109, 121
GUI, 15, 31, 49, 88, 108, 121
Initialization, see Initialization
Kernel-integrated, 43, 113, 116
Access, 72
Registration, 72

Makefile, 19, 33
Messages, 17
Name, 119
Occurrence, see Occurrence
Pdg, see Pdg
Registration, 16, 74
Script, 15
Sparecode, see Sparecode
Status, 46
Test, 121, 123
Testing, 22
Types, 73, 121
Wished, 114

plugin_types, 73
Plugin, 14, 15, 60

Register, 16, 17, 21, 25, 30, 43, 60, 61,
75, 85

PLUGIN_BFLAGS, 121
plugin_BFLAGS, 124
PLUGIN_CMI, 121
plugin_CMI, 124
PLUGIN_CMO, 19, 20, 22, 34, 51, 72, 121
plugin_CMO, 124
PLUGIN_DEPENDENCIES, 72, 119
PLUGIN_DEPENDS, 121
PLUGIN_DEPFLAGS, 121
plugin_DEPFLAGS, 124
PLUGIN_DIR, 119
plugin_DIR, 124
PLUGIN_DISTRIB_BIN, 123
PLUGIN_DISTRIB_EXTERNAL, 123
PLUGIN_DISTRIBUTED, 123
PLUGIN_DOCFLAGS, 121
plugin_DOCFLAGS, 124
PLUGIN_ENABLE, 119
PLUGIN_EXTRA_BYTE, 121
PLUGIN_EXTRA_DIRS, 121
PLUGIN_EXTRA_OPT, 121
PLUGIN_GENERATED, 121
plugin_GENERATED, 124
PLUGIN_GUI_CMO, 34, 109, 121

143



INDEX

plugin_GUI_OFLAGS, 124
PLUGIN_HAS_EXT_DOC, 121
PLUGIN_HAS_META, 119
PLUGIN_INTERNAL_TEST, 123
PLUGIN_INTRO, 110, 121
plugin_LINK_BFLAGS, 124
PLUGIN_LINK_GUI_BFLAGS, 121
plugin_LINK_GUI_BFLAGS, 124
PLUGIN_LINK_GUI_OFLAGS, 121
PLUGIN_LINK_OFLAGS, 121
plugin_LINK_OFLAGS, 124
PLUGIN_NAME, 19, 20, 22, 34, 51, 71, 72, 109,

119, 123
PLUGIN_NO_DEFAULT_TEST, 123
PLUGIN_NO_TEST, 121
PLUGIN_OFLAGS, 121
plugin_OFLAGS, 124
PLUGIN_PTESTS_OPTS, 123
PLUGIN_REQUIRES, 119
plugin_TARGET_CMA, 124
plugin_TARGET_CMX, 124
plugin_TARGET_CMXA, 124
plugin_TARGET_CMXS, 124
plugin_TARGET_GUI_CMA, 124
plugin_TARGET_GUI_CMO, 124
plugin_TARGET_GUI_CMX, 124
plugin_TARGET_GUI_CMXA, 124
plugin_TARGET_GUI_CMXS, 124
plugin_TARGET_CMO, 124
PLUGIN_TESTS_DIRS, 22, 121
plugin_TESTS_DIRS, 124
PLUGIN_TESTS_LIB, 121
plugin_TESTS_LIB, 124
PLUGIN_TYPES_CMO, 73, 116, 121
plugin_TYPES_CMO, 124
plugin_TYPES_CMX, 124
PLUGIN_TYPES_TODOC, 121
plugin_TYPES_TODOC, 124
PLUGIN_UNDOC, 121
PLUGIN_VERSION, 119
Pretty_source

PVDecl, 32
Pretty_utils, 43
PRINT_CP, 116
Printer_api

S.pp_exp, 27
S.pp_instr, 27
S.pp_stmt, 27
S.pp_varinfo, 28

Project, 37, 45, 68, 77, 98, 100
Current, 77, 77, 81, 83, 84, 100
Initial, 98
Use, 83

Project, 15, 83
clear, 39, 39, 83, 84
current, 77, 83
IOError, 83
load, 83
on, 84, 84
save, 83
set_current, 83, 83, 84
t, 39

Project_skeleton
t, 83

Property, 103
Property_status, 103
Ptests, 22, 52, 119
PTESTS_OPTS, 118

Saving, 45, 78, 79, 83
Selection, 78, 84
self, 79
Session, 83
Sharing, 100, 101

Widget, 109
Side-Effect, 82, 87
Sparecode, 53
State, 77, 84, 85, 98, 99

Cleaning, 82, 84
Dependency, 78, 79, 81, 84
Postponed, 80, 88

Functionalities, 77
Global Version, 81
Kind, see Kind
Local Version, 81, 82
Name, 79, 81
Registration, 77–79
Selection, see Selection
Sharing, 82

State, 80
dummy, 80

State_builder, 78, 79
Hashtbl, 37
Ref, 38, 82
Register, 78, 79, 81, 82

State_dependency_graph
S.add_codependencies, 80

State_selection, 84
only_dependencies, 83

144



INDEX

t, 39
with_dependencies, 39, 84

Structural_descr
p_int, 68, 70
pack, 70
structure
Sum, 68, 70

t
Structure, 68, 70

Tags, 119
Test, 22, 52, 118

Configuration, 22, 54
Directive, 22, 54
CMD, 58, 111
COMMENT, 111
DONTRUN, 111
EXEC, 59, 111
EXECNOW, 59, 111
EXIT, 111
FILEREG, 59, 111
FILTER, 60, 111
GCC, 111
LOG, 111
MACRO, 59, 111
MODULE, 59, 111
NOFRAMAC, 111
OPT, 22, 55, 111
STDOPT, 58, 111
TIMEOUT, 111

Header, 22, 54, 56
Suite, 53, 54

test_config, 54, 57, 59
tests, 53, 57
Tool, 46

Configuration, 47, 113, 114
Dependency, 48

Type
Dynamic, 67
Value, 67, 74, 75

Type, 15
Abstract, 75, 76
AlreadyExists, 74
name, 70
par, 68, 70
precedence
Basic, 68
Call, 68

t, 67, 74
Typed_parameter

t, 85

VERBOSEMAKE, 51, 116, 118
Visitor, 26, 98

Behavior, 100, 100
Cil, 98
Entry Point, 99

Copy, 83, 100, 100, 101
In-Place, 100, 100

Visitor
frama_c_inplace, 27
frama_c_visitor
current_kf, 101
vglob_aux, 28, 99
vstmt_aux, 28, 31, 99

generic_frama_c_visitor, 98, 101
visitFramacFileSameGlobals, 30
visitFramacFunction, 38

145


	Foreword
	Introduction
	About this document
	Outline

	Tutorial
	Quick Setup of a Development Environment
	Emacs Configuration Files
	Quick Merlin guide

	What Does a Plug-in Look Like?
	The Hello plug-in
	A Simple Script
	Registering a Script as a Plug-in
	Displaying Messages
	Adding Command Line Options
	Writing a Makefile
	Testing your Plug-in
	Documenting your Source Code

	The ViewCfg plug-in
	Visiting the AST
	Plug-In registration and command-line options
	Interfacing with a kernel-integrated plug-in
	Extending the Frama-C GUI
	Splitting files and writing a Makefile
	Getting your Plug-in Usable by Others
	Writing your Plug-in into the Journal
	Writing a Configure Script
	Getting your plug-in Usable in a Multi Projects Setting


	Software Architecture
	General Description
	Plug-ins
	Libraries
	Kernel Services
	Kernel Internals

	Advanced Plug-in Development
	Frama-C Configure.in
	Principle
	Addition of a Simple Plug-in
	Configuration of New Libraries or Tools
	Addition of Library/Tool Dependencies
	Addition of Plug-in Dependencies

	Plug-in Specific Configure.ac
	Frama-C Makefile
	Plug-in Specific Makefile
	Using Makefile.dynamic
	Compiling Frama-C and external plug-ins at the same time

	Testing
	Using ptests
	Configuration
	Alternative Testing
	Detailed options
	Detailed directives

	Plug-in General Services
	Logging Services
	From printf to Log
	Log Quick Reference
	Logging Routine Options
	Advanced Logging Services

	The Datatype library: Type Values and Datatypes
	Type Value
	Datatype

	Plug-in Registration and Access
	Registration through a .mli File
	Kernel-integrated Registration and Access
	Dynamic Registration and Access

	Journalization
	Project Management System
	Overview and Key Notions
	State: Principle
	Registering a New State
	Direct Use of Low-level Functor State_builder.Register
	Using Projects
	Selections

	Command Line Options
	Definition
	Tuning

	Initialization Steps
	Customizing the AST creation
	Customizing the machine model
	Machdep record fields
	Visitors
	Entry Points
	Methods
	Action Performed
	Visitors and Projects
	In-place and Copy Visitors
	Differences Between the Cil and Frama-C Visitors
	Example

	Logical Annotations
	Extending ACSL annotations
	Locations
	Representations
	Map Indexed by Locations

	GUI Extension
	Documentation
	General Overview
	Source Documentation


	Reference Manual
	Configure.in
	Makefiles
	Overview
	Sections of Makefile, Makefile.generating, Makefile.config.in, Makefile.common and Makefile.generic
	Variables of Makefile.dynamic
	.Makefile.user
	Makefile.dynamic

	Ptests
	Pre-defined macros for tests commands

	Profiling with Landmarks

	Changes
	Bibliography
	List of Figures
	Index

