
The Mthread plug-in
For Frama-C 32.0 (Germanium)

Boris Yakobowski
with Richard Bonichon, David Bühler and Basile Desloges

Work licensed under Creative Commons BY-SA licence
https://creativecommons.org/licenses/by-sa/4.0/

© 2011-2025 CEA-List

https://creativecommons.org/licenses/by-sa/4.0/

Contents

Foreword 3

1 An introduction to Mthread 4
1.1 What is Mthread?. 4
1.2 How Mthread works . 4
1.3 Running Mthread . 5

2 Mthread theory 6
2.1 Calling contexts . 6
2.2 Concurrent control-flow graphs 7

2.2.1 General idea . 7
2.2.2 Example . 7
2.2.3 Understanding loops in concurrent control flow graphs 8

2.3 Shared zones . 9
2.3.1 Protecting shared zones through mutexes 10

2.4 Related works . 11

3 Instrumenting the C concurrent primitives 13
3.1 First steps . 13
3.2 Stubbing the header (.h) files 13
3.3 Stubbing the source (.c) files 14

3.3.1 pthreads library . 15

4 Analyzing a full project without warnings 17
4.1 The philosophers example . 17

4.1.1 A first try . 18
4.1.2 Unrolling loops . 20

4.2 Other Mthread warnings . 21

5 Reading Mthread results 24
5.1 Reading the results of the philosophers examples 24
5.2 HTML . 26

6 Command-line options 30

A Mthread functions for stubbing 32

2

Foreword

This is the documentation of the Frama-C plug-in Mthread.
The content of this document corresponds to the version 32.0 (Germanium)of Frama-C. However the

development of the Mthread plug-in is still ongoing: features described here may evolve in the future.

Acknowledgements

This project has received funding from the ANR project Veridyc (ANR-09-SEGI-016).

3

1An introduction to Mthread

1.1 What is Mthread?

Mthread is a Frama-C plug-in dedicated to the analysis of concurrent C programs. It finds and displays
multithreaded events, such as thread creation, mutex locking, access to shared variables, etc. . . . Mthread
then gives a very simplified view of the source code, in which only source statements relevant to the
concurrent behavior of the program are left. It also displays variables that are shared between threads,
as well as data sent by threads on messages queues. For each shared memory zone, the mutexes that
may protect it are automatically inferred, and possible race conditions are reported.

1.2 How Mthread works

Mthread performs sound and precise analyzes of concurrent programs. It is built on top of the Eva
analysis of Frama-C, and uses the latter to derive sound values (hence sometimes over-approximated) for
all the variables of the program, including those that are shared between multiple threads. Schematically,
Mthread’s behavior can be summarized as follows:

– Do a symbolic execution of the main thread; find the threads it launches.
– Do a symbolic execution of the new threads, possibly discovering other new threads, which are

then also executed symbolically.
– From each thread, compute the set of variables it reads and writes, as well as the messages it tries

to receive and send.
– Compute the shared variables of the program, by detecting variables that are accessed concurrently

(ie. by at least two threads that are live at the same time). On such concurrent accesses, record
which mutexes are being hold by the various threads.

– Restart the whole process, reinjecting the results obtained so far:
– threads receiving messages from a message queue are given the values sent to this queue by

the other threads;
– threads reading shared variables “see” the values they write in those variables, but also those

written by the other threads.
– Iterate the process above until all threads agree on the information sent and exchanged during the

execution of the program.
Reaching a fixpoint of the above process means that a sound approximation of the behavior of the

program has been obtained, by construction. More details on how Mthread works are given in Chapter 2.

4

1.3. RUNNING MTHREAD

1.3 Running Mthread

Mthread is a Frama-C plug-in, and is activated when launching Frama-C by turning on the -mthread
switch at your shell prompt, as follows:

% frama-c <C files> -mthread <mthread options>

The various options that configure the behavior of Mthread will be given throughout this document,
and are summarized in Appendix 6. In order to be really useful, Mthread however requires you to
instrument the thread library used in your C project, as explained in §3.

5

2Mthread theory

The schema given in §1.2 already gives a faithful representation of Mthread fixpoint-based approach.
Through the Eva analysis, we obtain information about a thread; we then reinject those information
into (future) analyzes of the other threads. Reaching a fixpoint guarantees that all threads agree on the
concurrent part of the program, and that we have found an over-approximation of their behavior. The
sections below detail some of the computations Mthread does during the iterations.

2.1 Calling contexts

Although the approach outlined above is simple, obtaining precise results is not. Indeed, we must be
careful not to compute too general behaviors for the various threads, the risk being to get unusable
results. Mthread uses some callbacks made available by the Eva analysis to record the state of each
function at the end of its evaluation. In order to avoid losing precision, Mthread fuses those states only
when the calling contexts are the same. Formally, a calling context is the callstack that lead to the
execution of f, taking the statements at which the calls originated into account.

 main () {
 g ();
 }
 void g () {
 int x, y;
 f(&x, 1);
 f(&y, 2);
 }
 void f (int *p, int v) {

 *p = v;
 }

In the example above, there are two distinct calling contexts for the function f, namely
<main, 2>:<g, 6> and <main, 2>:<g, 7>. By making a distinction between those two calls,
Mthread is able to detect that x (resp. y) is always affected the value 1 (resp. 2). This is much more
precise than the information available by only inspecting the state of the Eva analysis at the end of the
execution, which merges together all the calls to a function. (This can be easily verified by querying
the possible values for p and v in the GUI of Frama-C, which would lead to conclude that x and y are
affected either 1 or 2, without the possibility to know which one).

6

2.2. CONCURRENT CONTROL-FLOW GRAPHS

2.2 Concurrent control-flow graphs

2.2.1 General idea
One result of the analyzes done by Mthread is the concurrent control-flow graph of each thread. Those
graphs aim at displaying all the following events:

– calls to a mthread.h primitive;
– accesses to a shared memory zone (see §2.3).
Basically, we build a very high-level view of the functions called by a thread, with the following

characteristics:
1. only function calls that contain an event, or that transitively lead (through another call) to such

an event, appear in the graph;
2. functions are duplicated for each calling context they appear in;
3. inside the body of a function, only events and high-level control-flow statements such as if and

loop appear. Control-flow statements that do not lead to an event are also removed.
Points 1 and 3 guarantee that the graph keeps a reasonable size, even with very big programs. Indeed,
most of the code is typically not related to its concurrent structure. Conversely, point 2 expands the
size of the graph, but increases its precision. Indeed, the statements executed by a function can be very
different from one call to another, and this is captured by our use of calling contexts.

Notice that the concurrent control-flow graph of a thread is very different from what would be
obtained with the Slicing plugin of Frama-C. In particular, our control-flow graph does not represent
executable code at all. (For example, incrementations of loop indices are generally removed from the
graph.) Conversely, our graph can be more precise when a function is called multiple times, and roughly
corresponds to the specialization obtained by -slicing-level 3.

2.2.2 Example
The concurrent control-flow graph for the main thread of the example
doc/eva/examples/mthread/ccfg.c, reprinted below, is given in Figure 2.1. How to gen-
erate this graph is explained in §5.2.

 #include <pthread.h>
 #include <stddef.h>

 pthread_t jobs[4];
 int x, global1, global2[2];

 void *fjob(void *_) {
 int r = global1 + global2[0] + global2[1];
 return NULL;

 }

 void g1(int* v, int i) {
 if (i<4)
 pthread_create(&jobs[i], NULL, fjob, NULL);
 else
 *v = 1;
 }

 //@ assigns *v, *(v+1) \from \nothing;
 void g2(int* v);

7

2.2. CONCURRENT CONTROL-FLOW GRAPHS

 void main(void) {
 int i, arr[2];
 void (*pf)(int*, int) = &g1;

 g1(NULL, 0);
 g2(arr);
 for (i=1;i<5;i++)
 if (!x) {
 (*pf)(&global1, i);
 g2(global2);
 }
 }

Let us illustrate through our example the characteristics of concurrent control-flow graphs that have
been mentioned above. The options we hint at are documented in Appendix 6.

– The topmost node contains the name of the function the thread starts with, here main.
– Calls to other functions are inlined within the graph, as can be seen eg. for g1. A dotted grey

edge links Call nodes to the corresponding return ones. (Option -return-edges.)
– Functions called twice in two different calling contexts, eg. g1, are inlined twice. Each body shown

represents precisely the execution of the corresponding call. For g1, the first call creates the first
thread, while the second call has a behavior that depends on i.

– For function calls occurring through pointers eg. the second call to g1, the real name of the
function is printed between the Call node and the body of the function.

– Calls to functions that do not lead to an event are removed. For example, the call g2(arr) does
not appear anywhere.

– Nodes with a red border represent immediate calls to one or more mthread.h primitives, that
are listed in the node. (In this case, only thread creations occur.)

– Nodes with a blue or green background represent accesses to a shared zone of the memory, and
are discussed in §2.3.

– Loop nodes represent while(1) loops; for loops are automatically desugared into while ones
by Frama-C.

– Diamond nodes appear for a function without definition, eg. g2. They represent all the events
that occur during the call to the function inside a single node. Functions without definition use
their ACSL prototype to specify the data they read and write.

– if constructs for which the condition is either completely true or completely false in the given
context are removed. This is the case for the if (!x), as x is always equal to 0 in the program.
Similarly, loops whose body do not contain an event are removed. Those simplifications can be
deactivated with -mt-full-cfg.

– The exit node represent the end of the thread, hence the outgoing edge that goes nowhere.
– Although this is not shown here, the Mthread graph simplifier is sometimes forced to leave some

nodes that do not really contribute to the concurrent structure of the program. This is typically
the case for functions that use gotos. Those nodes will not have any border or background.

2.2.3 Understanding loops in concurrent control flow graphs
A word must be said on the composite node Create thread jobs[1..3] of our example. It must
not be understood as “at each iteration of the loop, three threads are created”. This is indeed impossible:

– each node corresponds to a single statement, and no mthread.h primitive can create three threads
in a single statement;

– Mthread does not allow the same thread to be launched more than once, as indicated in §4.2.
The correct way to read the graph is the following: at each iteration of the loop, a different thread is

8

2.3. SHARED ZONES

created, with some iterations possibly spawning none. (In fact, in our case the iteration for i = 4 does
not create a thread.)

2.3 Shared zones

In this section, we call shared zone a region of the memory on which a race condition between at least
two threads can occur. Mthread performs a fine-grained analysis to detect those regions. It proceeds as
follows:

1. Once a thread is evaluated by the Eva analysis, we compute the global variables it reads and writes,
using the InOut plugin of Frama-C. This plugin uses the results of the Eva analysis, thus giving us
a sound but quite imprecise over-approximation of the shared zones accessed by this thread. Let
us call Ri(j) (resp. Wi(j)) the zones that are read (resp. written) by the thread j.

2. After a full iteration (once all threads have been computed), we find all the zones that are read by
at least one thread and written by at least one another.

RWi =
⋃

j,k,j ̸=k

(Ri(j) ∩ Wi(k))

This set over-approximates the shared zones, and we call it potential shared zones.
3. For each thread that accesses a zone in RWi we start another Eva analysis, and watch the zones

above: at the end of the execution of any function, if it reads or writes a zone in RWi, we record a
Mthread event for this access. This event will thus appear in the control-flow graph for the current
thread.
Let Rpz(j) (resp. Wpz(j)) be the set of those precise read (resp. write) events relative to the zone
z, for the thread j.

4. Once all the needed threads have been recomputed, we compute the threads that are live on each
point of the control-flow graphs. Let us note live(j@e) the fact that the thread j is live at the node
containing the event e.
By definition, there is potentially a race condition on a zone z if it is written by one thread and
read by another, both threads being live at the same time. Thus, for each zone z of RWi, we define
the fact it is shared by:

shared(z) = ∃j, k, j ̸= k ∧
(
∃ej ∈ Rpz(j), ∃ek ∈ Wpz(k), live(j@ek) ∧ live(k@ej)

)
(Of course, this is only the mathematical definition of the shared predicate. The computations themselves
are done efficiently, to avoid the cubic complexity of the formulas above.)

The definition of shared is as precise as possible given the information available to Mthread, while
remaining sound. In particular, it avoids flagging as shared an important set of variables, those that are
only initialized (ie. written) by the main thread, and used (ie. read) afterward by the various threads.
As long as the initialization occurs before the creation of any of the threads that access the variable,
this variable is not shared.1

Once all the analyzes are finished, Mthread classifies the events representing accesses to potential
shared zones in three categories. Let us consider an event e for an access to a zone z.

Non-shared access This means that z is in fact not a shared zone. Although z was in RWi, there
is never any race condition when accessing this zone. Since those zones are not important,
e is not shown in the control-flow graph by default. This can be overridden by the option
-mt-non-shared-accesses if desired.

1 In fact, to reduce the time spent computing shared zones, Mthread completely ignores all the accesses that occur before
the creation of the first thread.

9

2.3. SHARED ZONES

Shared, non-concurrent access Mthread has determined that z is indeed a shared zone. However,
the particular event represented by e is not concurrent, because all the other threads that access z
are either not created yet, or canceled. This is typically the case for most initializations of shared
zones by the main thread. In the control-flow graph, those events are shown in green. The option
-mt-no-non-concurrent-accesses can be used to hide them if desired.

Concurrent access The zone z is indeed a shared zone, and the access is concurrent. That is, a race
condition is possible at e. It is shown in blue in the control-flow graph.

An example of the various cases above can be found in the file
src/plugins/eva/tests/mthread/sharedvars.c, which we do not reproduce below for
space consideration. Of the 6 variables of the programs, 3 are shared (those starting by ’s’) and 3 are
not (those starting by ’u’). Running Mthread on it with the option -mt-verbose 3 is concluded by

[mt] Imprecise locations to watch: u3; s4; s5; s6
[mt] Possible read/write data races:
s6:
read by jobs4 at sharedvars.c:56, unprotected
read by jobs6 at sharedvars.c:75, unprotected
write by jobs4 at sharedvars.c:57, unprotected
write by jobs6 at sharedvars.c:76, unprotected

s5:
read by jobs51 at sharedvars.c:62, unprotected
write by jobs51 at sharedvars.c:63, unprotected
write by jobs5 at sharedvars.c:69, unprotected

s4:
read by jobs4 at sharedvars.c:53, unprotected
write by <main> at sharedvars.c:100, unprotected
write by jobs4 at sharedvars.c:54, unprotected

[mt] Shared memory: s4; s5; s6

The line “Imprecise locations to watch” indicates that the potential shared zones are the variables u3,
s4, s5 and s6 . The section “Possible read/write data races” and the line “Shared memory” however
indicates that u3 is not really shared.

Also, examining the control-flow graph of the main thread shows a non-concurrent access to s4
before the creation of &jobs4. This access is not listed above, as it is not concurrent —and thus must
not be taken into account when examining the mutexes that protect s4.

2.3.1 Protecting shared zones through mutexes
The race conditions evoked in the previous section are theoretical. That is, they can be prevented using
an appropriate use of mutexes. However, once all the shared zones have been found, Mthread needs to
do very little more to have this information.

Indeed, for each access to a shared zone (ie. an event in the control-flow graph), we known which
mutexes are locked, and which are not. Thus, in its final output, when Mthread lists all the shared zones
it has detected, it adds the information it possesses about mutexes. Mutexes that are guaranteed to be
locked are written directly. Mutexes that may or may not be locked (eg. that are locked in one branch
of the program, but not in another) are prefixed by (?).

In a second time, Mthread combines those information together and list for each zone the mutexes
that are either possibly or systematically locked when the zone is accessed. A shared zone that is
protected by at least one guaranteed mutex will not be subject to a race condition.

Since sharedvars.c does not use mutexes at all, it is not very pertinent here. Some examples of
protection outputs are given in §5.1.

10

2.4. RELATED WORKS

2.4 Related works

Ferrara [Fer09] uses a fixpoint-based approach very similar to ours to analyze Java bytecode. The static
analyzer Locksmith [HFP06], which is dedicated to finding data races in multithreaded C programs,
possess some similarities with our shared zones detection algorithm. The Goblint [VV07] is race-detection
tool using some fixpoint computation (resolved by a constraint solver): it offers a path-sensitive analysis
of data-races, based upon conditional constraint propagation and points-to analysis. Miné [Min12] builds
an analyzer for concurrent code on top of the Astree abstract interpreter. Apart from the use of two
distinct base analysers, our approach and his are very similar.

11

2.4. RELATED WORKS

Start: main

Call g1((int *)0,0);

Call pthread_create(& jobs[i],(pthread_attr_t const *)0,& fjob,(void *)0);

return

Create thread jobs[0]

return

Start thread jobs[0]

while(1)

if (i < 5)

writes global2[0..1]

Call (*pf)(& global1,i);

then

exit

else

if (i < 4)

g1

return

Call pthread_create(& jobs[i],(pthread_attr_t const *)0,& fjob,(void *)0);

then

*v = 1;
writes global1

else

Create thread jobs[1]
Create thread jobs[2]
Create thread jobs[3]

return

Start thread jobs[1]
Start thread jobs[2]
Start thread jobs[3]

Call g2(global2);

Figure 2.1: Concurrent control-flow graph for the main thread of our example

12

3Instrumenting the C concurrent
primitives

To precisely detect calls to concurrent primitives during the symbolic execution of the program, Mthread
makes the hypothesis that those primitives invoke low-level Mthread functions. Hence, the first step in
using Mthread consists in properly stubbing the thread library of the program. This work has already
been done for parts of the pthreads library. The functions currently supported by Mthread are detailed
in the next sections.

In this chapter, and unless stated otherwise, the files we refer to are located in the
src/plugins/eva/share/mthread/ directory of Frama-C sources, or alternatively in the
share/mt of the Frama-C installation. After installation, this directory can be found by running the
command echo $(frama-c-config -print-share-path)/mt. This directory will be abbrevi-
ated as $MTSHARE in the rest of this document.

3.1 First steps

For a new project, the first step consists in finding within the C sources the .h file containing the
declarations for the various multithreaded primitives used in the code. In general, those functions include
at least

– thread creation (and possibly cancellation);
– mutex locking and release;
– emission and reception on/from a message queue.

Other interesting primitives are those initializing the structures used to refer to the objects above
(threads, mutexes, queues), functions using more evolved concurrency primitives (spinlocks,. . .) etc. . . .
A detailed status of which functions are currently handled by Mthread is given in Appendix A.

Once the prototypes of the functions above have been found, any potential implementation must
be removed from the source, for example by using well-placed #ifdef 0 lines. This step is however
typically not needed, as these functions usually belong to the OS implementation, the source code of
which is rarely available.

3.2 Stubbing the header (.h) files

The next steps consists in stubbing the existing concurrency .h files. The primary responsibility of this
step is to define all the types in the prototypes of the functions in terms of either __fc_mthread_id
or __fc_mthread_name. Both types are defined in the Mthread header mthread.h as

typedef void *__fc_mthread_name;

13

3.3. STUBBING THE SOURCE (.C) FILES

typedef int __fc_mthread_id;

In general, __fc_mthread_id is the return type of the initialization functions, and also the type
used by functions that use an object. During execution, they are simply sequential non-null offsets to
an array allocated by Mthread, that itself holds the state of the object. The non-null information is
important, as some code uses the convention v == 0 to test whether an object is initialized. Also,
we cannot return a pointer, as some concurrenct library assume that thread ids are no bigger than the
short type; returning short integers (unless the code allocates an inordinate amount of eg. mutexes)
ensures that our ids can safely be cast to short, or even char.

By contrast, __fc_mthread_name is the input type used by initialization functions. It is used
as a hint to name the mutex, thread, or queue. It can be either NULL, in which case Mthread will use
an internal name, a constant string, or the address of a global variable, with possibly an offset (if the
variable is an array cell).

As an example, let us show how those two types are used in the prototypes of the primitive Mthread
functions. The lines below are also an excerpt of mthread.h. (The entire file is given in Appendix A.)

__fc_mthread_id Frama_C_thread_create(__fc_mthread_name,
void *(*)(void *),
...);

int Frama_C_thread_cancel(__fc_mthread_id);

__fc_mthread_id Frama_C_mutex_init(__fc_mthread_name);
int Frama_C_mutex_lock(__fc_mthread_id);

To conclude this section, let us consider excerpts of the stubbing that has been done for queue-related
functions. The prototypes can be found in the file mthread_queue.h, and are reprinted below.

#include <mthread.h>

typedef __fc_mthread_id msgqueue_t;

int queuecreate(msgqueue_t *q, int size);
int msgsnd(msgqueue_t msgqid, const char *mess, int size);
int msgrcv(msgqueue_t msgqid, int size, char *mess);

Except for the typedef declaration, everything can be taken verbatim from the original header
that is being stubbed. The type msgqueue_t is defined as type alias to __fc_mthread_id. Indeed,
the interface of the message queue library does not lend itself to the separation between id and name
we use in Mthread, and the same can be said for pthreads. Instead, as the next section will show, the
initialization primitives use the address of the object they create when naming them.

If the types are compatible it is possible to write the stubs for a library without having to provide
an updated header file. This is the case for instance with pthreads where the stubs are written to be
compatible with the system header file shipped with Frama-C’s libc in the file mthread_pthread.c,
as explained in the next section.

3.3 Stubbing the source (.c) files

The bulk of the stubbing work consists in implementing the concurrent C primitives in terms of the
low-level Mthread ones. Stubs are generally very easy to write, as most of the time they consist in:

– disregarding useless arguments (such as initialization options Mthread may not handle yet), or
swapping some arguments around;

– dereferencing pointers, if a pointer is supplied while Mthread needs the value it points to;

14

3.3. STUBBING THE SOURCE (.C) FILES

– for initialization functions, storing or returning the result of the call to the low-level Mthread
primitive (which will be the id of the thread, mutex or queue for Mthread);

– translating the Mthread return codes into those of the OS library.

3.3.1 pthreads library
The stubbing for the pthreads library can be found in mthread_pthread.c. Its interesting parts are
reprinted below.

#include <mthread.h>
#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg) {

int result = Frama_C_thread_create(thread, start_routine, arg);
if (result > 0) {

*thread = result;
Frama_C_thread_start(result);
return 0;

} else {
return 11; /* EAGAIN */

}
}

int pthread_cancel(pthread_t thread) {
int result = Frama_C_thread_cancel(thread);
return (result != -1 ? 0 : 3 /* ESRCH */);

}

pthread_t pthread_self(void) { return Frama_C_thread_id(); }

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr) {

int result = Frama_C_mutex_init(mutex);
if (result > 0) {

mutex->_fc = result;
return 0;

} else {
return 22; /* EINVAL */

}
}

int pthread_mutex_lock(pthread_mutex_t *mutex) {
int result = Frama_C_mutex_lock(mutex->_fc);
return (result != -1 ? 0 : 22 /* EINVAL */);

}

int pthread_mutex_trylock(pthread_mutex_t *mutex) {
int result = Frama_C_mutex_lock(mutex->_fc);
return (result != -1 ? 0 : 22 /* EINVAL */);

}

int pthread_mutex_unlock(pthread_mutex_t *mutex) {

15

3.3. STUBBING THE SOURCE (.C) FILES

int result = Frama_C_mutex_unlock(mutex->_fc);
return (result != -1 ? 0 : 22 /* EINVAL */);

}

Notice the recurring pattern *obj = obj_init(&obj, ...) (with proper error-handling) used in
both functions pthread_create and pthread_mutex_init. The address holding the object is used
as name hint during the creation. Then the Mthread initialization function returns the id of the object,
which is stored at the given address. The functions that use this id either dereference their argument if
the id is passed as a pointer (pthread_mutex_lock) or use it directly otherwise (pthread_cancel),
depending on their POSIX prototype.

As hinted by the comments, not all functions are properly stubbed. The *setcancel functions,
which are related to the cancellability of a thread, are not given a body; for now, we implicitly assume
that pthread_cancel always succeed in stopping a thread. For functions that do not initialize values,
there is little differences between not stubbing a function, and giving it a trivial body; the latter approach
however silences a few Frama-C warnings. For functions that initialize a structure used later, a stub is
however mandatory.

Also, thread return codes are not stored yet, which means that pthread_join is not modeled as
precisely as possible.

16

4Analyzing a full project without
warnings

This chapter explains the warning or error messages emitted by Mthread during its analysis. Mthread’s
own analysis can only be as precise as the one done by Eva for each thread. Thus, setting up the latter
correctly is important; relevant information can be found in its own manual:

https://frama-c.com/eva.html

During the analysis, the first hint that something might have gone awry resides in the warnings sent
back to the user. As a general rule of thumb, it is good to eliminate those messages. How to read the
results of Mthread will be explained in Chapter 5.

4.1 The philosophers example

In the remainder of this document, we will use the source code below to exemplify some uses of Mthread.
It is taken from the file doc/eva/examples/mthread/philo.c, and contains a modified version of
the classic philosophers problem.

 #include <pthread.h>
 #include <stddef.h>
 #include "mthread_queue.h"
 #define N 5

 int end2 = 0;
 pthread_mutex_t locks[N];

 pthread_t jobs[N];
 msgqueue_t queue;

 int random(void);

 void aux (int l, int r, int mess) {
 pthread_mutex_lock(locks+l);
 pthread_mutex_lock(locks+r);
 if (random() && mess != 2) {
 char buf[2];
 buf[0]=mess;
 end2 = 1;

17

https://frama-c.com/eva.html

4.1. THE PHILOSOPHERS EXAMPLE

 msgsnd(queue, buf, 2);
 }
 pthread_mutex_unlock(locks+r);
 pthread_mutex_unlock(locks+l);
 }

 void * job(void * k) {
 int p = (int) k ;
 int l = p>0 ? p-1 : N-1 ;
 int r = p<N-1 ? p+1 : 0 ;

 while(1)
 aux(l, r, p+1);
 }

 int main() {
 int i ;
 char end[2];
 end[0]=0;

 for(i=0;i<N;i++)
 pthread_mutex_init(&locks[i] , NULL);

 queuecreate(&queue, 5);

 for(i=0;i<N;i++)
 pthread_create(&jobs[i], NULL, job, (void *) i);

 while(!(end[0] && __MTHREAD_SYNC(end2)))
 msgrcv(queue, 2, end);

 return 0;
 }

This code presents some interesting challenges. First, the ids for the threads and mutexes of the
program are stored in two arrays, jobs and locks respectively. Both arrays are initialized through
loops — a challenge for any analyzer. Moreover, the behavior of the various threads is governed by a
unique function: the only difference between them lies in the argument they initially receive. Finally,
the various threads write in the global variable end2, and send a partially initialized message on the
queue queue. The termination of the main thread is influenced by those two objects.

4.1.1 A first try
Let us start Mthread on this program. We need to start Frama-C on both philo.c and on our stubbed
pthreads library. The option -mt-threads-lib with value pthreads should be used to tell Mthread
that we need the stubbed pthreads library. Additionally, philo.c uses message queue functions stubbed
separately in $MTSHARE/mthread_queue.c, so this file should be added to the list of files to parse.
Finally, the Eva analysis is by default very verbose, and it is a good idea to partially silence it using
-eva-verbose 0. Thus, a complete invocation of Mthread would be

% frama-c -mthread -mt-threads-lib pthreads \
$MTSHARE/mthread_queue.c philo.c \
-eva-verbose 0

(Frama-C assumes the main function is called main, which is the case here)

18

4.1. THE PHILOSOPHERS EXAMPLE

While Mthread’s output is also rapidly verbose (we will only reproduce snippets below), it is quite
apparent that something has gone awry. Many lines start by philo.c:ll[mt] warning:, where
ll is a line number. The prefix [mt] being a short-name for Mthread, let us examine a few of those
warning lines.

The first one is
[mt] philo.c:46: Initializing mutex #2
[mt] philo.c:46: Warning:
Trying to initialize mutex #2, but unable to check its precise status
(internal value {0; 1} should be 0).

By contrast, the previous line was
[mt] philo.c:46: Initializing mutex locks[0].

Since line 46 is a call to pthread_mutex_init, it is clear that the mutex initialization did not
succeed in all cases. This is of course due to the presence of the loop, which is executed symbolically,
but imprecisely. While the first iteration of the body proceeds as expected (and initializes locks[0]),
the next ones do not. Instead, during the analysis of the loop, the value i ranges over the sets {0}
. . .{0, 1, 2, 3, 4}. While in the first iteration, Eva can reduce the value of locks[i] to a single
value, this is not the case for the following iterations where the expression ranges over the locations
&locks[1 ... 4]. Mthread cannot distinguish one mutex from the other and uses a generic name
#2 for the set of locks. Moreover, Mthread cannot know which mutex is really being initialized at each
iteration and accordingly warns that it is unable to check if the mutex has not already been initialized.

In this particular case, since the initialization is in a loop, increasing the -eva-slevel option of the
Eva analysis should help. Indeed this option controls, among others, the symbolic execution of loops. By
default, no -eva-slevel is used, and variables modified inside loops become imprecise immediately.

Before increasing this option, let us consider the other warnings. For line 19, we actually get two
different warnings depending on which thread is analyzed.

The first warning which occurs during the analysis of thread jobs[0] is:
[mt] philo.c:19: Warning: Trying to lock a possibly uninitialized mutex.
[mt] philo.c:19: Warning:
Trying to lock mutex #2, but unable to check its precise status
(internal value {0; 1} should be 1).

This is the same problem as before: mutex #2 is actually a set of mutexes and Mthread is not able to
know which of the concrete mutexes is being locked.

The second warning occurs during the analysis of thread #3:
[mt] philo.c:19: Warning:
During mutex lock: invalid mutex id. Non-integer value: {0; 1; 2} Ignoring.

This is similar to the previous warning in that Mthread cannot know which mutex is being locked,
but this time this is due to the fact that the threads too have been merged into an abstract thread
representing several concrete threads. We can see that by checking the logs for the line 51 that creates
the threads:

[mt] philo.c:51: New thread: jobs[0], fun job, parent <main>, args {0}
[mt] philo.c:51: Start thread jobs[0]
[mt] philo.c:51: New thread: #3, fun job, parent <main>, args {0; 1}
[mt] philo.c:51: Start thread #3
[mt] philo.c:51: New context for #3, fun job, parent <main>, args {0; 1; 2}
[mt] philo.c:51:
New context for #3, fun job, parent <main>, args {0; 1; 2; 3; 4}

[mt] philo.c:51: Thread #3, fun job, parent <main>, args {0; 1; 2; 3; 4}

Here we see that after creating a thread for jobs[0], Eva starts merging the states for several threads
and Mthread creates a second thread generically called #3. Instead of creating several new threads, the

19

4.1. THE PHILOSOPHERS EXAMPLE

context of this abstract thread is updated to support more arguments until the set {0; 1; 2; 3; 4}
is used. Since this argument is used to select the mutexes to lock and unlock in function aux, Mthread
cannot know which mutex is being used.

4.1.2 Unrolling loops
Let us increase the slevel to separate the states of the loops in the Eva analysis. Here, it suffices
to execute loops precisely 5 times. Thus, we add option -eva-slevel 5 to the command-line used
above. In this case, it is sufficient to make all warnings disappear.

Alternatively, it is also possible to syntactically unroll loops. Although it is seldom useful for the Eva
analysis, it may be for Mthread itself. Let us consider the file doc/eva/examples/mthread/init.c
of Mthread, which is reproduced below.

 /* This example tests the various way a structure can be named:
 with a pointer, with a string, without any indication */
 #include <stddef.h>
 #include <mthread.h>
 #define N 3

 int locks[N];
 char (*names[3*N]) =
 { "mu1", "mu2", "mu3", "mu4", "mu5", "mu6", "mu7", "mu8", "mu9" };

 int mutex_init(void* mname) {
 return Frama_C_mutex_init(mname);
 }

 void main() {
 int i ;

 for(i=0;i<N;i++)
 mutex_init(&locks[i]);

 for(i=0;i<N;i++)
 mutex_init(names[i]);

 //@ loop unfold 2*N;
 for(i=0;i<2*N;i++)
 if (i >= N)
 mutex_init(names[i]);

 for(i=0;i<3*N;i++)
 if (i >= 2*N)
 mutex_init(names[i]);

 // Warning: the same mutex is repeatedly created
 for(i=0;i<N;i++)
 mutex_init(NULL);
 }

This example try to initialize 12 mutexes, using three different mechanisms. In the first loop, the mutexes
are named using a location in an array. In the second loop, third and fourth loops, they are named using

20

4.2. OTHER MTHREAD WARNINGS

constant strings in increasingly large loops. The result of the analysis of the main thread by Mthread
are given below (with a proper -eva-slevel 3):

[mt] *** Computing value analysis for main thread
[eva:experimental] Warning: The mthread domain is experimental.
[mt] New thread: <main>, fun main
[mt] init.c:20: Initializing mutex locks[0]
[mt] init.c:20: Initializing mutex locks[1]
[mt] init.c:20: Initializing mutex locks[2]
[mt] init.c:23: Initializing mutex mu1
[mt] init.c:23: Initializing mutex mu2
[mt] init.c:23: Initializing mutex mu3
[mt] init.c:28: Initializing mutex mu4
[mt] init.c:28: Initializing mutex mu5
[mt] init.c:28: Initializing mutex mu6
[mt] init.c:32: Initializing mutex mu7
[mt] init.c:32: Initializing mutex #11
[mt] init.c:32: Warning:
Trying to initialize mutex #11, but unable to check its precise status
(internal value {0; 1} should be 0).

[mt] init.c:36: Initializing mutex 0
[mt] init.c:36: Warning:
Trying to initialize mutex 0, but it might already be unlocked
(and initialized).

[eva] init.c:13: Warning: The mutex 0 is already registered.
[mt] *** First value analysis for main thread done.

As can be seen, the first 9 initializations succeed without problem. The mutexes created in the first loop
are named after the array passed as hint (and the index of the mutex in the array), while the exact
names contained in names are used for the mutexes 4 to 9 in the second and third loops.

Problems however arise in the last loop, although it is very similar to the third one. Mthread initializes
the tenth mutex on the first iteration, but complains in the second that it cannot determine if the mutex
has already been initialized. Indeed the number of iterations of the loop is greater than the value given
to -eva-slevel and Mthread is not able to separate the different mutexes. A possible solution (other
than increasing the -eva-slevel value) is to syntactically unroll the loop, as was done for the third
one. The instruction //@ loop unfold N; instructs Frama-C to unroll a loop N times. Afterward,
Mthread sees some mutex initializations at different statements, and accepts them. Internally however,
those statements point to the same initial line number, hence the messages for the third loop in the log.

4.2 Other Mthread warnings

In this section, we give a short survey of some the warnings emitted by Mthread. In a log output,
those warnings contain the string [mt]. Most of the time, the warnings are self-explanatory, and they
sometimes contain their own solution. Roughly speaking, they can be partitioned in the categories
below.

Erroneous or imprecise arguments. Mthread systematically sanitizes the arguments it receives from
the Frama_C_* functions defined in mthread.h, and ignores the entire call (with a warning)
when it cannot give a sense to them. We have already given an example in §4.1.1 with an imprecise
name for a mutex initialization. Nearly identical warnings are emitted with imprecise names or
ids, for threads, mutexes or queues.
Other similar errors can include passing a function without a body to the thread creation function
Frama_C_thread_create, or too few arguments. The corresponding messages are given below.1

21

4.2. OTHER MTHREAD WARNINGS

philo.c:51:[mt] warning: During thread creation: invalid thread function.
Missing definition for function ’job’. Ignoring.

philo.c:51:[mt] user error: When creating thread &jobs[0] from function
job: too few arguments, 1 expected but 0 given. Ignoring.

Multiple creation of a unique thread. Mthread is quite tolerant when it encounters code that would
initialize again a mutex or a queue potentially already initialized:

philo.c:46:[mt] warning: Mutex &locks might be already initialized

We cannot be as lenient for threads, however, to preserve the correctness of our analyzes. Thus,
when we detect a thread that seems to be started twice, we immediately fail. Of course, it remains
possible to launch two threads with exactly the same arguments, but the program must use two
different names.

philo.c:51:[mt] Thread &jobs[0], fun job, parent _main_, args {0; }
philo.c:51:[mt] user error: Thread &jobs[0] has already been created

previously in the current thread.

Read or write of the entire memory. If the Eva analysis dereferences a very imprecise pointer, it
can access the whole memory. This completely invalidates the assumptions made by Mthread when
it searches for shared memory, and can make it very imprecise. We therefore entirely ignore the
access. Since such an imprecise pointer almost always comes from an erroneous stubbing, or a
very buggy original code, this is not a limitation in practice.
The directory tests contains an example designed to test this case, called read_all.c. The
Eva analysis prints a warning when the faulty pointer p is being dereferenced (line 4). The Mthread
warning is on line 7.

 read_all.c:26:[mt] New thread: &jobs, fun f, parent <main>,
 args [0..4294967295]
 read_all.c:26:[mt] Start thread &jobs
 read_all.c:28:[mt] user error: read of the whole memory. Ignoring to allow
 Mthread to continue, but the analysis will not be correct.
 read_all.c:28:[eva] warning: Completely invalid destination for assigns
 clause *p. Ignoring.

Buffer overflow in message sending or receiving. Mthread send and receive functions take as
input either a source buffer, or a destination one, as well as its size. Of course, the Eva analysis
must be wary of buffer overflow. Let us successively change the declaration of the buffers buf and
end of philo.c to char[1] (lines 31 and 42).

Small buffer during emission

../share/mthread_queue.c:10:[kernel] warning: out of bounds read.
assert \valid(mess+(0..size-1));

philo.c:25:[mt] Sending message on &queue, content [0..1] \in {{}}

The indicated line is inside the function msgsnd:

int result = Frama_C_queue_send(msgqid, mess, size);

1 The messages are obtained by simple modifications of our examples and stubs, not shown in this document.

22

4.2. OTHER MTHREAD WARNINGS

Here we have mess=buf, size=2, and the program is defined only if buf[0..(2-1)] is a valid
array slice. This is indeed false in the modified program, as buf has size 1. In this case, the Eva
analysis is sure that the range is always invalid, as there is no approximation on either buf or
size, and the read fails. This can be verified with the empty message content in the second line
of the log.

Small buffer during reception

../share/mthread_queue.c:16:[kernel] warning: out of bounds write.
assert \valid(mess+(0..size-1));

../share/mthread_queue.c:16:[kernel] warning: all target addresses were
invalid. This path is assumed to be dead.

philo.c:54:[mt] warning: Found message of length 2, which is too long for
buffer ’mess’. Execution will continue without those messages.
(Ignore "This path is assumed to be dead message if any".)

philo.c:54:[mt] Receiving message on &queue, max size 2, stored in &end.
No valid value to receive.

Again, the Eva analysis detects that we are accessing past the end of an array. The warning “This
path is assumed to be dead” is actually not really relevant here, and should be ignored. Next,
Mthread adds a more precise warning about which buffer is too small, and warns that messages
of length 2 are too long. This means that any message of at least that size will be ignored by
Frama_C_queue_receive. Since all messages are of size 2, there is nothing valid to receive
(hence the last line of the log), and Mthread instructs the Eva analysis to stop when evaluating the
call to Frama_C_queue_receive.

Too many objects. By default, Mthread allows the creation of 32 threads, mutexes or queues, with
different counters for each kind of object. This value is hard-coded in mthread.h, in order to
have valid C. If Mthread detects that a program wants to allocate more than this number of objects,
it issues a warning.

philo.c:51:[mt] warning: During thread creation. Too many thread ids,
unable to register another one. Try to increase MTHREAD_NUMBER_IDS
above 32 in the preprocessing directive. Ignoring.

As hinted by the message, the number of possible distinct Mthread objects is defined by the C
macro MTHREAD_NUMBER_IDS. Thus, it suffices to increase its value in the preprocessing directive
-cpp-command, eg. by adding -DMTHREAD_NUMBER_IDS=40 for Gcc or cpp.

Unrecognized id. The ids returned by Mthread for threads, mutexes and queues are C ints, unless
they are cast to another type by the program itself. If the code does strange things with those
ints, eg. incrementing them, it can build precise but incorrect ids. Mthread will then fail with a
message similar to the one below.

philo.c:29:[mt] warning: During mutex lock. Id 13 for mutexes does not
exists (incrementation inside program?). Ignoring.

Uninitialized concurrency structures. Primitives receiving an id as argument can be passed the
value 0. This typically corresponds to non-initialized mutexes, queues etc. . . Either this is a mistake
in the code (the programmer forgot the initialization), or the initialization will be done later, by
another thread, and the warning should disappear in later iterations of the analysis.

philo.c:38:[mt] warning: Trying to unlock uninitialized mutex. Ignoring

23

5Reading Mthread results

This chapter explains how to interpret the results output by Mthread, on the philosophers example.

5.1 Reading the results of the philosophers examples

Running Mthread on philo.c goes smoothly once a proper slevel (of at least 5) is used. No warning
is emitted during the analysis. Mthread reports it stops after 4 iterations, having reached the fixpoint.
However, not all threads are executed at each iteration. For example, Mthread detects it would learn
nothing by analyzing the thread main during its second step, and thus skips this analysis. If we read
more finely the output, for example by setting -mt-verbose 2, the iteration structure looks like this:

Initial run of the main thread This analysis detects the five secondary threads. Receiving a message
on &queue fails. No potential shared zone is detected — quite logically, as only one thread was
running.

First iteration The five secondary threads are executed. Messages sent on &queue are memorized for
an eventual use in another thread.

[mt] philo.c:25:
Sending message on queue, content [0] \in {1}

[1] \in UNINITIALIZED

Second iteration The main thread is recomputed, because Mthread detects that some messages can
be received on &queue.

[mt] *** Computing thread <main>, iteration 2 (new message received)

During this iteration, the call to msgrcv succeeds, and the value end[0] becomes possibly
non-null. As a result, a new shared memory zone is detected, the variable end2.

[mt] Concurrent imprecise accesses have changed: before
\nothing

vs.
end2

Third iteration All threads are recomputed because we want to monitor the accesses to the potential
shared variable end2:

[mt] *** Computing thread jobs[0], iteration 3
(potential shared vars changed, interferences changed)

At the end of the iteration, end2 is detected as being a (really) shared zone, not just a potential
one:

24

5.1. READING THE RESULTS OF THE PHILOSOPHERS EXAMPLES

[mt] Shared memory: end2
[mt] Concurrent precise var accesses have changed: before

\nothing
vs.
end2

Mthread also detects that end2 is not protected in a coherent way, ie. that there might be a race
condition on it.

[mt] Possible read/write data races:
end2:
read by <main> at philo.c:53, unprotected
write by jobs[0] at philo.c:24, protected by locks[1] locks[4]
write by jobs[2] at philo.c:24, protected by locks[1] locks[3]
write by jobs[3] at philo.c:24, protected by locks[2] locks[4]
write by jobs[4] at philo.c:24, protected by locks[0] locks[3]

[mt] Mutexes for concurrent accesses:
end2 write protected by (?)locks[0] (?)locks[1] (?)locks[2] (?)locks[3]

(?)locks[4], read unprotected

Mthread does not report any new potential shared variable however, which is coherent with the
program.

Fourth iteration During this iteration, the thread main is recomputed. Indeed, new possible values
for end2 (coming from the other threads), have been found in iteration 3.

[mt] *** Computing thread <main>, iteration 4
(shared vars values changed, interferences changed)

During this iteration, the return statement of the main function becomes reachable.
As this state of the analysis, there is no reason to recompute any of the threads, and Mthread
detects that a fixpoint is reached.

[mt] ******* Analysis performed, 4 iterations

Not all the logs given above are available with the default verbosity level of 1. Indeed, they are not
important to understand the results of the analysis, only the way it proceeded.

Let us point out a few more information. For example, the information on the mutexes protecting the
accesses to end2 are two-fold. First, we have an exhaustive account, with all accesses by each thread;
each access is listed together with the mutex contexts at those points of the analyzes. In this example,
the information is as precise as possible. Second, we have a summary, that aggregates the exhaustive
listing.

[mt] Mutexes for concurrent accesses:
end2 write protected by (?)locks[0] (?)locks[1] (?)locks[2] (?)locks[3]

(?)locks[4], read unprotected

This shows that end2 is not protected at all when it is read. Conversely, it is protected by various
mutexes when it is written, but never in a consistent way: there is always a (?) in front of the mutex
name, indicating that in at least one case, the mutex was not locked. This indicates possible race
conditions both when reading and writing end2, which is indeed the case in the program.

Finally, let us discuss the values of the messages sent and received on &queue. We reprint some
relevant messages below.

[mt] philo.c:25:
Sending message on queue, content [0] \in {1}

[1] \in UNINITIALIZED

25

5.2. HTML

[mt] philo.c:54:
Receiving message on queue, max size 2, stored in &end. Possible values:
From thread jobs[0]: [0] \in {1}

[1] \in UNINITIALIZED
From thread jobs[2]: [0] \in {3}

[1] \in UNINITIALIZED
From thread jobs[3]: [0] \in {4}

[1] \in UNINITIALIZED
From thread jobs[4]: [0] \in {5}

[1] \in UNINITIALIZED

Mthread is quite accommodating about the content of the message, and tolerates the fact that a part of
the source buffer is uninitialized. Inspecting the value of end1 after line 54 of philo.c reveals that the
possible values are

end[0] \in {1; 3; 4; 5}
[1] \in UNINITIALIZED

This is also the most precise approximation possible.

5.2 HTML

Mthread HTML output, triggered by option -mt-extract html, produces a summary of the concurrent
program, as well as control-flow graphs of each thread as analyzed by Mthread. Let us start by the first
representation extracted from Mthread’s internal control-flow-graph model: a set of HTML pages. This
allows easy browsing through the various information computed by Mthread.

For our simple dining philosophers’ example, these pages can be produced in the directory
html_summary by typing :

% frama-c -mthread -mt-threads-lib pthreads -mt-extract html \
$MTSHARE/mthread_queue.c \
-eva-slevel 256 philo.c

An HTML summary of the code (Figure 5.1) is displayed at html_summary/index.html, providing
information about thread creations, lock and unlock directives as well as message queue uses. There also
are links to the various threads encountered in the program. Clicking on one of those links leads to a
summary concerning the given thread. This thread-focused summary (Figure 5.2) shows the concurrent
control-flow graph of the thread (§2.2).

The precision and details shown on this graph can be controlled by Mthread’s options detailed in 2.2
and Appendix 6. Links to all the other threads are provided but one important feature here is that the
control-flow graph is clickable. A click on the Call aux node yields the source code behind this node
(Figure 5.3). Most of the expressions in the source code page are themselves clickable, for example to
navigate from function to function.

1 For example using Frama-C’s GUI

26

5.2. HTML

Figure 5.1: HTML summary of dining philosophers

27

5.2. HTML

Figure 5.2: Excerpt from the first philosopher’s control-flow graph

28

5.2. HTML

Figure 5.3: Excerpt from the philosophers’ source code

29

6Command-line options

This section describes the list of options available to finely tune the behavior of Mthread. They can
also be manually found using frama-c -mt-help. Some experimental options are intentionally left
undocumented.

Basics. As a reminder, the generic options for Mthread are the following:

-mthread This enables the Mthread plug-in. This option is mandatory for any use of Mthread and
launches the Mthread analysis.

-mt-threads-lib builtins-only|pthreads Specify which threading library is used. If the user
provides custom stubs then builtins-only should be used to only bring into scope Mthread’s
built-in primitives. This option can be used without -mthread to add the stubs to the parsing
stage without running an analysis in a two-steps process:

% frama-c -mt-threads-lib pthreads \
ccfg.c \
-save session.sav

% frama-c -load session.sav -mthread -eva-verbose 0

-mt-verbose n Change the verbosity of Mthread. Default is 1. Any value strictly above 1 will show
the internal state of the analysis at the end of each iteration.

-mt-help Display a short summary of all the Mthread options available.
(The options for Frama-C in general can be obtained through frama-c -kernel-help, while
those for the Eva analysis are invoked by frama-c -eva-help.)

External outputs. The Mthread results printed as HTML for further study.

-mt-extract html Extracts a partial version of the results found by Mthread as HTML. All results
can be browsed1 starting from the file ./html_summary/index.html.

Control-flow graph options. The options below control how the concurrent control-flow graphs are
displayed and simplified.

-mt-return-edges Link nodes for function calls to their corresponding return nodes. This makes
it easier to see nested calls of big functions. (Set by default)

-mt-non-shared-accesses Do not remove nodes corresponding to accesses to false shared accesses
(§2.3). Not set by default; if the option is set, the accesses are shown in white in the control-flow
graph.

1 A navigator with support for SVG files is required to display the control-flow graphs.

30

-mt-non-concurrent-accesses Do not remove nodes corresponding to accesses to shared accesses
that occur in a non-concurrent context (§2.3). Set by default, those accesses are shown in green in
the control-flow graph.

-mt-full-cfg Do not simplify the bodies of functions that contain multithreaded events. All the
statements of those functions will be reflected in the control-flow graphs, which can result in very
big graphs: use this option with caution. Calls to functions that do not contain multithreaded
events are however never inlined in the control-flow graphs. Not set by default.

Debug options. Those debug options are not intended for general use, but can sometimes be useful
to diagnose a strange behavior of Mthread. Other debug options are unintentionally not described.

-mt-stop-after <i> Instructs Mthread to only perform at most i iterations of the analysis. If the
analysis has not converged by then, it is stopped, and the remaining steps to perform are shown
on the log.

31

AMthread functions for stubbing

This appendix details the concurrent functions Mthread is able to detect and handle. Their prototypes
can be found in the file $MTSHARE\mthread.h.

Thread-related primitives

– Thread creation, through function Frama_C_thread_create
– Thread start, through function Frama_C_thread_start
– Thread immediate exit, through function Frama_C_thread_exit
– Current thread id, through function Frama_C_thread_id
– Thread suspension, through function Frama_C_thread_suspend
– Thread canceling, through function Frama_C_thread_cancel

(This functions currently cancels the thread regardless of any potential cancellability state
notion, such as the one available in pthreads.)

Mutex-related primitives

– Mutex initializing, through function Frama_C_mutex_init
– Mutex locking, through function Frama_C_mutex_lock
– Mutex release, through function Frama_C_mutex_unlock

Queue-related primitives

– Queue initializing, through function Frama_C_queue_init
– Message sending, through function Frama_C_queue_send
– Message reception, through function Frama_C_queue_receive

Miscellaneous functions

– Logging, through function Frama_C_mthread_show
This function takes as first argument a constant string will be used as a message, and a
number of C values that will be printed after the message. It can be used to show in the
control-flow graph any information relevant to the analysis, and does not modify the memory
state at all.

– Forcing synchronization of unprotected shared values, through the use of the function
Frama_C_mthread_sync.

More involved concurrency primitives, such as spinlocks etc. . . . are not currently supported. They
may be added to Mthread later.

32

Bibliography

[Fer09] Pietro Ferrara. Static analysis via abstract interpretation of multithreaded programs. PhD
thesis, Ecole Polytechnique of Paris (France) and University "Ca’ Foscari" of Venice (Italy),
May 2009.

[HFP06] Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis. Lock inference for atomic sections.
In Proceedings of the First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing. ACM, June 2006.

[Min12] A. Miné. Static analysis of run-time errors in embedded real-time parallel C programs. Logical
Methods in Computer Science (LMCS), 8(26):1–63, Mar. 2012. http://www.di.ens.fr/
~mine/publi/article-mine-LMCS12.pdf.

[VV07] Vesal Vojdani and Varmo Vene. Goblint: path-sensitive data race analysis. In SPLST, pages
171–187, 2007.

33

http://www.di.ens.fr/~mine/publi/article-mine-LMCS12.pdf
http://www.di.ens.fr/~mine/publi/article-mine-LMCS12.pdf

	Foreword
	1 An introduction to Mthread
	1.1 What is Mthread?
	1.2 How Mthread works
	1.3 Running Mthread

	2 Mthread theory
	2.1 Calling contexts
	2.2 Concurrent control-flow graphs
	2.2.1 General idea
	2.2.2 Example
	2.2.3 Understanding loops in concurrent control flow graphs

	2.3 Shared zones
	2.3.1 Protecting shared zones through mutexes

	2.4 Related works

	3 Instrumenting the C concurrent primitives
	3.1 First steps
	3.2 Stubbing the header (.h) files
	3.3 Stubbing the source (.c) files
	3.3.1 pthreads library

	4 Analyzing a full project without warnings
	4.1 The philosophers example
	4.1.1 A first try
	4.1.2 Unrolling loops

	4.2 Other Mthread warnings

	5 Reading Mthread results
	5.1 Reading the results of the philosophers examples
	5.2 HTML

	6 Command-line options
	A Mthread functions for stubbing

