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Chapter 1

Introduction

This document is a reference manual for ACSL. ACSL is an acronym for �ANSI/ISO C Speci�-
cation Language�. This is a Behavioral Interface Speci�cation Language (BISL) implemented
in the Frama-C framework. It aims at specifying behavioral properties of C source code. The
main inspiration for this language comes from the speci�cation language of the Caduceus
tool [9, 10] for deductive veri�cation of behavioral properties of C programs. The speci�cation
language of Caduceus is itself inspired from the Java Modeling Language (JML [18]) which
aims at similar goals for Java source code: indeed it aims both at runtime assertion checking
and static veri�cation using the ESC/Java2 tool [14], where we aim at static veri�cation and
deductive veri�cation (see Appendix A.2 for a detailed comparison between ACSL and JML).

Going back further in history, JML design was guided by the general design-by-contract prin-
ciple proposed by Bertrand Meyer, who took his own inspiration from the concepts of precon-
ditions and postconditions on a routine, going back at least to Dijkstra, Floyd and Hoare in
the late 60's and early 70's, and originally implemented in the Eiffel language.

In this document, we assume that the reader has a good knowledge of the ISO C programming
language [13, 12].

1.1 Organization of this document

In this preliminary chapter we introduce some de�nitions and vocabulary, and discuss gener-
alities about this speci�cation language. Chapter 2 presents the speci�cation language itself.
Chapter 3 presents additional information about libraries of speci�cations. Appendix A pro-
vides speci�c hindsight over type-checking ACSL annotations, the relation between ACSL and
JML, and speci�cation templates. A detailed table of contents is given on page 5. A glossary
is given in Appendix A.1.

1.2 Generalities about Annotations

In this document, we consider that speci�cations are given as annotations in comments written
directly in C source �les, so that source �les remain compilable. Those comments must start
by /*@ or //@ and end as usual in C.

In some contexts, it is not possible to modify the source code. It is strongly recommended that
a tool which implements ACSL speci�cations provides technical means to store annotations
separately from the source. It is not the purpose of this document to describe such means.
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CHAPTER 1. INTRODUCTION

Nevertheless, some of the speci�cations, namely those at a global level, can be given in separate
�les: logical speci�cations can be imported (see Section 2.6.11) and a function contract can
be attached to a copy of the function pro�le (see Section 2.3.5).

1.2.1 Kinds of annotations

� Global annotations:

� function contract : such an annotation is inserted just before the declaration or the
de�nition of a function. See section 2.3.

� global invariant : this is allowed at the level of global declarations. See section 2.11.

� type invariant : this allows to declare both structure or union invariants, and in-
variants on type names introduced by typedef . See section 2.11.

� logic speci�cations : de�nitions of logic functions or predicates, lemmas, axiomati-
zations by declaration of new logic types, logic functions, predicates with axioms
they satisfy. Such an annotation is placed at the level of global declarations. See
section 2.6

� Statement annotations:

� assertion : these are allowed everywhere a C label is allowed, or just before a block
closing brace. See section 2.4.1.

� loop annotation (invariant, variant, assign clauses): is allowed immediately before
a loop statement: for , while , do . . . while . See Section 2.4.2.

� statement contract : very similar to a function contract, and placed before a state-
ment or a block. Semantical conditions must be checked (no goto going inside, no
goto going outside). See Section 2.4.4.

� ghost code : regular C code, only visible from the speci�cations, that is only allowed
to modify ghost variables. See section 2.12. This includes ghost braces for enclosing
blocks.

1.2.2 Parsing annotations in practice

In JML, parsing is done by simply ignoring //@, /*@ and */ at the lexical analysis level. This
technique could modify the semantics of the code, for example:

1 r e t u r n x /*@ +1 */ ;

In our language, this is forbidden. Technically, the current implementation of Frama-C isolates
the comments in a �rst step of syntax analysis, and then parses a second time. Nevertheless,
the grammar and the corresponding parser must be carefully designed to avoid interaction of
annotations with the code. For example, in code such as

1 i f (c) //@ a s s e r t P;

2 c=1;

the statement c=1 must be understood as the branch of the if. This is ensured by the
grammar below, saying that assert annotations are not statements themselves, but attached
to the statement that follows, like C labels.

12



1.3. NOTATIONS FOR GRAMMARS

1.2.3 About preprocessing

This document considers C source after preprocessing. Tools must decide how they handle
preprocessing (what to do with annotations, whether macro substitution should be performed,
etc.)

1.2.4 About keywords

Additional keywords of the speci�cation language start with a backslash, if they are used in
position of a term or a predicate (which are de�ned in the following). Otherwise they do not
start with a backslash (like ensures ) and they remain valid identi�ers.

1.3 Notations for grammars

In this document, grammar rules are given in BNF form. In grammar rules, we use extra
notations e∗ to denote repetition of zero, one or more occurrences of e, e+ for repetition of one
or more occurrences of e, and e? for zero or one occurrence of e. For the sake of simplicity, we
only describe annotations in the usual /*@ ... */ style of comments. One-line annotations in
//@ comments are alike.

13





Chapter 2

Speci�cation language

2.1 Lexical rules

Lexical structure mostly follows that of ANSI C. A few di�erences must be noted.

� The at sign (@) is a blank character, thus equivalent to a space character.

� Identi�ers may start with the backslash character (\).

� Some UTF8 characters may be used in place of some constructs, as shown in the fol-
lowing table:

>= ≥ 0x2265
<= ≤ 0x2264
> > 0x003E
< < 0x003C
!= 6≡ 0x2262
== ≡ 0x2261
==> =⇒ 0x21D2
<==> ⇐⇒ 0x21D4
&& ∧ 0x2227
|| ∨ 0x2228
^^ ⊕ 0x22BB
! ¬ 0x00AC
- (unary minus) − 0x2212
\forall ∀ 0x2200
\exists ∃ 0x2203
integer Z 0x2124
real R 0x211D
boolean B 0x1D539

� Comments can be put inside ACSL annotations. They use the C++ format, i.e. begin
with // and extend to the end of current line.

15



CHAPTER 2. SPECIFICATION LANGUAGE

literal ::= \true | \false boolean constants
| integer integer constants
| real real constants
| string string constants
| character character constants

bin-op ::= + | - | * | / | % | << | >>

| == | != | <= | >= | > | <

| && | || | ^^ boolean operations
| & | | | --> | <--> | ^ bitwise operations

unary-op ::= + | - unary plus and minus
| ! boolean negation
| ~ bitwise complementation
| * pointer dereferencing
| & address-of operator

term ::= literal literal constants
| id variables
| unary-op term

| term bin-op term

| term [ term ] array access
| { term \with [ term ] = term } array functional modi�er
| term . id structure �eld access
| { term \with . id = term } �eld functional modi�er
| term -> id

| ( type-expr ) term cast
| id ( term (, term)∗ ) function application
| ( term ) parentheses
| term ? term : term ternary condition
| \let id = term ; term local binding
| sizeof ( term )

| sizeof ( C-type-expr )

| id : term syntactic naming
| string : term syntactic naming

Figure 2.1: Grammar of terms

2.2 Logic expressions

This �rst section presents the language of expressions one can use in annotations. These
are called logic expressions in the following. They correspond to pure C expressions, with
additional constructs that we will introduce progressively.

Figures 2.1 and 2.2 present the grammar for the basic constructs of logic expressions. In
that grammar, we distinguish between predicates and terms, following the usual distinction
between propositions and terms in classical �rst-order logic. The grammar for binders and
type expressions is given separately in Figure 2.3.

With respect to C pure expressions, the additional constructs are as follows:

16



2.2. LOGIC EXPRESSIONS

Additional connectives C operators && (UTF8: ∧), || (UTF8: ∨) and ! (UTF8: ¬) are
used as logical connectives. There are additional connectives ==> (UTF8: =⇒) for
implication, <==> (UTF8: ⇐⇒) for equivalence and ^^ (UTF8: ⊕) for exclusive or.
These logical connectives all have a bitwise counterpart, either C ones like &, |, ~ and
^, or additional ones like bitwise implication --> and bitwise equivalence <-->.

Quanti�cation Universal quanti�cation is denoted by \forall τ x1,. . .,xn; e and existential
quanti�cation by \exists τ x1,. . .,xn; e.

Local binding \let x = e1;e2 introduces the name x for expression e1 which can be used in
expression e2.

Conditional c ? e1 : e2. There is a subtlety here: the condition may be either a boolean
term or a predicate. In case of a predicate, the two branches must be also predicates,
so that this construct acts as a connective with the following semantics: c ? e1 : e2 is
equivalent to (c ==> e1) && (! c ==> e2).

Syntactic naming id : e is a term or a predicate equivalent to e. It is di�erent from local
naming with \let : the name cannot be reused in other terms or predicates. It is only
for readibility purposes.

Functional modi�er The composite element modi�er is an additional operator related to
C structure �eld and array accessors. The expression { s \with .id = v } denotes the
same structure as s, except for the �eld id that is equal to v. The equivalent expression
for an array is { t \with [ i ] = v } which returns the same array as t, except for the
ith element whose value is v. See section 2.10 for an example of use of these operators.

rel-op ::= == | != | <= | >= | > | <

pred ::= \true | \false

| term (rel-op term)+ comparisons (see remark)
| id ( term (, term)∗ ) predicate application
| ( pred ) parentheses
| pred && pred conjunction
| pred || pred disjunction
| pred ==> pred implication
| pred <==> pred equivalence
| ! pred negation
| pred ^^ pred exclusive or
| term ? pred : pred ternary condition
| pred ? pred : pred

| \let id = term ; pred local binding
| \let id = pred ; pred

| \forall binders ; pred universal quanti�cation
| \exists binders ; pred existential quanti�cation
| id : pred syntactic naming
| string : pred syntactic naming

Figure 2.2: Grammar of predicates
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CHAPTER 2. SPECIFICATION LANGUAGE

binders ::= binder (, binder)∗

binder ::= type-expr variable-ident

(,variable-ident)∗

type-expr ::= logic-type-expr | C-type-expr

logic-type-expr ::= built-in-logic-type

| id type identi�er

built-in-logic-type ::= boolean | integer | real

variable-ident ::= id | * variable-ident

| variable-ident []

| ( variable-ident )

Figure 2.3: Grammar of binders and type expressions

Logic functions Applications in terms and in propositions are not applications of C func-
tions, but of logic functions or predicates; see Section 2.6 for detail.

Consecutive comparison operators The construct t1 relop1 t2 relop2 t3 · · · tk
with several consecutive comparison operators is a shortcut for
(t1 relop1 t2) && (t2 relop2 t3) && · · ·. It is required that the relopi operators
must be in the same �direction�, i.e. they must all belong either to {<, <=, ==} or to
{>,>=,==}. Expressions such as x < y > z or x != y != z are not allowed.

To enforce the same interpretation as in C expressions, one may need to add extra paren-
theses: a == b < c is equivalent to a == b && b < c, whereas a == (b < c) is equivalent
to \let x = b < c; a == x. This situation raises some issues, as in the example below.

There is a subtlety regarding comparison operators: they are predicates when used in predicate
position, and boolean functions when used in term position.

Example 2.1 Let us consider the following example:

i n t f( i n t a, i n t b) { r e t u r n a < b; }

� the obvious postcondition \result == a < b is not the right one because it is actually a
shortcut for \result == a && a < b.

� adding parentheses results in a correct post-condition \result == (a < b). Note however
that there is an implicit conversion (see Sec. 2.2.3) from the int (the type of \result ) to
boolean (the type of (a<b))

� an equivalent post-condition, which does not rely on implicit conversion, is
( \result != 0) == (a<b). Both pairs of parentheses are mandatory.

� \result == ( integer)(a<b) is also acceptable because it compares two integers. The cast
towards integer enforces a<b to be understood as a boolean term. Notice that a cast
towards int would also be acceptable.

� \result != 0 <==> a < b is acceptable because it is an equivalence between two predi-
cates.

18



2.2. LOGIC EXPRESSIONS

class associativity operators
selection left [· · ·] -> .

unary right ! ~ + - * & (cast) sizeof

multiplicative left * / %

additive left + -

shift left << >>

comparison left < <= > >=

comparison left == !=

bitwise and left &

bitwise xor left ^

bitwise or left |

bitwise implies left -->

bitwise equiv left <-->

connective and left &&

connective xor left ^^

connective or left ||

connective implies right ==>

connective equiv left <==>

ternary connective right · · ·?· · ·:· · ·
binding left \forall \exists \let

naming right :

Figure 2.4: Operator precedence

2.2.1 Operators precedence

The precedence of C operators is conservatively extended with additional operators, as shown
in Figure 2.4. In this table, operators are sorted from highest to lowest priority. Operators of
same priority are presented on the same line.

There is a remaining ambiguity between the connective · · ·?· · ·:· · · and the labelling operator :.
Consider for instance the expression x?y:z:t. The precedence table does not indicate whether
this should be understood as x?(y:z):t or x?y:(z:t). Such a case must be considered as a
syntax error, and should be �xed by explicitly adding parentheses.

2.2.2 Semantics

The semantics of logic expressions in ACSL is based on mathematical �rst-order logic [24]. In
particular, it is a 2-valued logic with only total functions. Consequently, expressions are never
�unde�ned�. This is an important design choice and the speci�cation writer should be aware of
that. (For a discussion about the issues raised by such design choices, in similar speci�cation
languages such as JML, see the comprehensive list compiled by Patrice Chalin [4, 5].)

Having only total functions implies than one can write terms such as 1/0, or *p when p is null
(or more generally when it points to a non-properly allocated memory cell). In particular,

the predicates
1/0 == 1/0

*p == *p
are valid, since they are instances of the axiom ∀x, x = x

of �rst-order logic. The reader should not be alarmed, because there is no way to deduce
anything useful from such terms. As usual, it is up to the speci�cation designer to write
consistent assertions. For example, when introducing the following lemma (see Section 2.6):

19



CHAPTER 2. SPECIFICATION LANGUAGE

1 /*@ lemma div_mul_identity:

2 @ \ f o r a l l r e a l x, r e a l y; y != 0.0 ==> y*(x/y) == x;

3 @*/

a premise is added to require y to be non zero.

2.2.3 Typing

The language of logic expressions is typed (as in multi-sorted �rst-order logic). Types are
either C types or logic types de�ned as follows:

� �mathematical� types: integer for unbounded, mathematical integers, real for real num-
bers, boolean for booleans (with values written \true and \false );

� logic types introduced by the speci�cation writer (see Section 2.6).

There are implicit coercions for numeric types:

� C integral types char, short , int and long, signed or unsigned, are all subtypes of type
integer ;

� integer is itself a subtype of type real ;

� C types �oat and double are subtypes of type real .

Notes:

� There is a distinction between booleans and predicates. The expression x<y in term
position is a boolean, and the same expression is also allowed in predicate position.

� Unlike in C, there is a distinction between booleans and integers. There is an im-
plicit promotion from integers to booleans, thus one may write x && y instead of
x != 0 && y != 0. If the reverse conversion is needed, an explicit cast is required, e.g.
( int)(x>0)+1, where \false becomes 0 and \true becomes 1.

� Quanti�cation can be made over any type: logic types and C types. Quanti�cation over
pointers must be used carefully, since it depends on the memory state where derefer-
encing is done (see Section 2.2.4 and Section 2.6.9).

Formal typing rules for terms are given in appendix A.3.

2.2.4 Integer arithmetic and machine integers

The following integer arithmetic operations apply to mathematical integers: addition, subtrac-
tion, multiplication, unary minus. The value of a C variable of an integral type is promoted
to a mathematical integer. As a consequence, there is no �arithmetic over�ow� in logic ex-
pressions.

Division and modulo are also mathematical operations, which coincide with the corresponding
C operations on C machine integers, thus following the ISO C99 conventions. In particular,
these are not the usual mathematical Euclidean division and remainder. Generally speak-
ing, division rounds the result towards zero. The results are not speci�ed if divisor is zero;
otherwise if q and r are the quotient and the remainder of n divided by d then:
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� |d× q| ≤ |n|, and |q| is maximal for this property;

� q is zero if |n| < |d|;

� q is positive if |n| ≥ |d| and n and d have the same sign;

� q is negative if |n| ≥ |d| and n and d have opposite signs;

� q × d+ r = n;

� |r| < |d|;

� r is zero or has the same sign as n.

Example 2.2 The following examples illustrate the results of division and modulo depending
on the sign of their arguments:

� 5/3 is 1 and 5%3 is 2;

� (-5)/3 is -1 and (-5)%3 is -2;

� 5/(-3) is -1 and 5%(-3) is 2;

� (-5)/(-3) is 1 and (-5)%(-3) is -2.

Hexadecimal and octal constants

Hexadecimal and octal constants are always non-negative. Su�xes u and l for C constants
are allowed but meaningless.

Casts and over�ows

In logic expressions, casting from mathematical integers to an integral C type t (such as char,
short , int , etc.) is allowed and is interpreted as follows: the result is the unique value of the
corresponding type that is congruent to the mathematical result modulo the cardinal of this
type, that is 28× sizeof (t).

Example 2.3 (unsigned char)1000 is 1000 mod 256 i.e. 232.

To express in the logic the value of a C expression, one has to add all the necessary
casts. For example, the logic expression denoting the value of the C expression x*y+z is
( int)(( int)(x*y)+z). Note that there is no implicit cast from integers to C integral types.

Example 2.4 The declaration

//@ l o g i c i n t f( i n t x) = x+1 ;

is not allowed because x+1, which is a mathematical integer, must be casted to int . One should
write either

//@ l o g i c i n t e g e r f( i n t x) = x+1 ;

or

//@ l o g i c i n t f( i n t x) = ( i n t )(x+1) ;
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Quanti�cation on C integral types

Quanti�cation over a C integral type corresponds to integer quanti�cation over the corre-
sponding interval.

Example 2.5 Thus the formula

\ f o r a l l cha r c; c <= 1000

is equivalent to

\ f o r a l l i n t e g e r c; CHAR_MIN <= c <= CHAR_MAX ==> c <= 1000

where the the bounds CHAR_MIN and CHAR_MAX are de�ned in limits.h

Size of C integer types

The size of C types is architecture-dependent. ACSL does not enforce these sizes either,
hence the semantics of terms involving such types is also architecture-dependent. The sizeof

operator may be used in annotations and is consistent with its C counterpart. For instance,
it should be possible to verify the following code:

1 /*@ e n s u r e s \ r e s u l t <= s i z e o f ( i n t ); */

2 i n t f() { r e t u r n s i z e o f ( cha r ); }

Constants giving maximum and minimum values of those types may be provided in a library.

Enum types

Enum types are also interpreted as mathematical integers. Casting an integer into an enum
in the logic gives the same result as if the cast was performed in the C code.

Bitwise operations

Like arithmetic operations, bitwise operations apply to any mathematical integer: any mathe-
matical integer has a unique in�nite 2-complement binary representation with in�nitely many
zeros (for non-negative numbers) or ones (for negative numbers) on the left. Bitwise opera-
tions apply to this representation.

Example 2.6

� 7 & 12 == · · ·00111 & · · ·001100 == · · ·00100 == 4

� -8 | 5 == · · ·11000 | · · ·00101 == · · ·11101 == -3

� ~5 == ~· · · 00101 == · · ·111010 == -6

� -5 << 2 == · · ·11011 << 2 == · · ·11101100 == -20

� 5 >> 2 == · · ·00101 >> 2 == · · ·0001 == 1

� -5 >> 2 == · · ·11011 >> 2 == · · ·1110 == -2
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2.2.5 Real numbers and �oating point numbers

Floating-point constants and operations are interpreted as mathematical real numbers: a C
variable of type �oat or double is implicitly promoted to a real. Integers are promoted to reals
if necessary. Usual binary operations are interpreted as operators on real numbers, hence they
never involve any rounding nor over�ow.

Example 2.7 In an annotation, 1e+300 * 1e+300 is equal to 1e+600, even if that last number
exceeds the largest representable number in double precision: there is no "over�ow".

2∗0.1 is equal to the real number 0.2, and not to any of its �oating-point approximation: there
is no "rounding".

Unlike the promotion of C integer types to mathematical integers, there are special �oat
values which do not naturally map to a real number, namely the IEEE-754 special values for
�not-a-number�, +∞ and −∞. See below for a detailed discussion on such special values.
However, remember that ACSL's logic has only total functions. Thus, there are implicit
promotion functions real_of_float and real_of_double whose results on the 3 values above
is left unspeci�ed.

In logic, real literals can also be expressed under the hexadecimal form of C99: 0xhh.hhp±dd
where h are hexadecimal digits and dd is in decimal, denotes number hh.hh × 2dd, e.g.
0x1.Fp-4 is (1 + 15/16)× 2−4.

Usual operators for comparison are interpreted as real operators too. In particular,
equality operation ≡ of �oat (or double) expressions means equality of the real numbers
they represent respectively. Or equivalently, x ≡ y for x, y two �oat variables means
real_of_float(x) ≡ real_of_float(y) with the mathematical equality of real numbers.

Special predicates are also available to express the comparison operators of �oat (resp. double)
numbers as in C: \eq_�oat, \gt_�oat , \ge_�oat, \le_�oat , \lt_�oat , \ne_�oat (resp. for
double).

Casts, in�nity and NaNs

Casting from a C integer type or a �oat type to a �oat or a double is as in C: the same
conversion operations apply.

Conversion of real numbers to �oat or double values indeed depends on various possible
rounding modes de�ned by the IEEE 754 standard [23, 25]. These modes are de�ned by a
logic type (see section 2.6.8):

/*@ t ype rounding_mode = \Up | \Down | \ToZero | \NearestAway | \Neares tEven ;
*/

Then rounding a real number can be done explicitly using functions
l o g i c f l o a t \ round_f loa t (rounding_mode m, r e a l x);

l o g i c doub l e \round_double (rounding_mode m, r e a l x);

Cast operators ( �oat ) and (double) applied to a mathematical integer or real number x are
equivalent to apply rounding functions above with the nearest-even rounding mode (which is
the default rounding mode in C programs) If the source real number is too large, this may
also result into one of the special values +in�nity and -in�nity.

Example 2.8 We have ( �oat )0.1 ≡ 13421773 × 2−27 which is equal to
0.100000001490116119384765625
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Notice also that unlike for integers, su�xes f and l are meaningful, because they implicitly
add a cast operator as above.

This semantics of casts ensures that the �oat result r of a C operation e1 op e2 on �oats, if
there is no over�ow and if the default rounding mode is not changed in the program, has the
same real value as the logic expression ( �oat )(e1 op e2). Notice that this is not true for the
equality \eq_�oat of �oats: -0.0 + -0.0 in C is equal to the �oat number -0.0, which is not
\eq_�oat to 0.0, which is the value of the logic expression ( �oat )(-0.0 + -0.0).

Finally, additional predicates are provided on �oat and double numbers, which check that
their argument is NaN or a �nite number respectively:

1 p r e d i c a t e \is_NaN( f l o a t x);

2 p r e d i c a t e \is_NaN( doub l e x);

3 p r e d i c a t e \ i s _ f i n i t e ( f l o a t x);

4 p r e d i c a t e \ i s _ f i n i t e ( doub l e x);

Quanti�cation

Quanti�cation over a variable of type real is of course usual quanti�cation over real numbers.

Quanti�cation over �oat (resp. double) types is allowed too, and is supposed to range over all
real numbers representable as �oats (resp doubles). In particular, this does not include NaN,
+in�nity and -in�nity in the considered range.

Mathematical functions

Classical mathematical operations like exponential, sine, cosine, and such are available as
built-in:

i n t e g e r \min( i n t e g e r x, i n t e g e r y) ;

i n t e g e r \max( i n t e g e r x, i n t e g e r y) ;

r e a l \min( r e a l x, r e a l y) ;

r e a l \max( r e a l x, r e a l y) ;

i n t e g e r \abs ( i n t e g e r x) ;

r e a l \abs ( r e a l x) ;

r e a l \ s q r t ( r e a l x) ;

r e a l \pow( r e a l x, r e a l y) ;

i n t e g e r \ c e i l ( r e a l x) ;

i n t e g e r \ f l o o r ( r e a l x) ;

r e a l \exp( r e a l x) ;

r e a l \ l og ( r e a l x) ;

r e a l \ log10 ( r e a l x) ;

r e a l \cos ( r e a l x) ;

r e a l \ s i n ( r e a l x) ;

r e a l \tan ( r e a l x) ;

r e a l \cosh ( r e a l x) ;

r e a l \ s i n h ( r e a l x) ;

r e a l \tanh ( r e a l x) ;

r e a l \acos ( r e a l x) ;

r e a l \ a s i n ( r e a l x) ;

r e a l \atan ( r e a l x) ;

r e a l \atan2 ( r e a l y, r e a l x) ;

r e a l \hypot ( r e a l x, r e a l y) ;
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Exact computations

In order to specify properties of rounding errors, it is useful to express something about the
so-called exact computations [3]: the computations that would be performed in an ideal mode
where variables denote true real numbers.

To express such exact computations, two special constructs exist in annotations:

� \exact(x) denotes the value of the C variable x (or more generally any C left-value) as
if the program was executed with ideal real numbers.

� \round_error(x) is a shortcut for |x− \exact(x)|

Example 2.9 Here is an example of a naive approximation of cosine [2].

/*@ r e q u i r e s \abs ( \exac t (x)) <= 0x1p -5;

@ r e q u i r e s \ round_er ro r (x) <= 0x1p -20;

@ e n s u r e s \abs ( \exac t ( \ r e s u l t ) - \cos ( \exac t (x))) <= 0x1p -24;

@ e n s u r e s \ round_er ro r ( \ r e s u l t ) <= \round_er ro r (x) + 0x3p -24;

@*/

f l o a t cosine( f l o a t x) {

r e t u r n 1.0f - x * x * 0.5f;

}

2.2.6 C arrays and pointers

Address operator, array access, pointer arithmetic and dereferencing

These operators are similar to their corresponding C operators.

address-of operator should be used with caution. Values in logic do not lie in C memory so
it does not mean anything to talk about their �address�.

Unlike in C, there is no implicit cast from from an array type to a pointer type. Nevertheless,
arithmetic and dereferencing over arrays lying in C memory are allowed like in C.

Example 2.10 Dereferencing a C array is equivalent to an access to the �rst element of the
array ; shifting it from i denotes the address of its ith element.

i n t tab [10] = { 1 } ;

i n t x ;

i n t *p = &x;

//@ r e q u i r e s p == &x

i n t main( vo i d ){
//@ a s s e r t tab [0]==1 && *p == x;

//@ a s s e r t *tab == 1;

i n t *q = &tab [3];

//@ a s s e r t q+1 == tab +4;

...

}

Since pointers can only refers to values lying in C memory, p->s is always equivalent to
(*p).s. On the contrary, t[i] is not always equivalent to *(t+i), especially for arrays not
lying in C memory. Section 2.2.7 details the use of arrays as logic values. There are also
di�erences between t and the pointer to its �rst element when evaluating an expression at a
given program point. See Section 2.4.3 for more information.
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Function pointers

Pointers to C functions are allowed in logic. The only possible use of them is to check for
equality.

Example 2.11

i n t f( i n t x);

i n t g( i n t x);

//@ r e q u i r e s p == &f || p == &g;

vo i d h( i n t (*p)( i n t )) {

...

}

2.2.7 Structures, Unions and Arrays in logic

Aggregate C objects (i.e. structures, unions and arrays) are also possible values for terms in
logic. They can be passed as parameters (and also returned) to logic functions, tested for
equality, etc. like any other values.

Aggregate types can be declared in logic, and their contents may be any logic types themselves.
Constructing such values in logic can be performed using a syntax similar to C designated
initializers.

Example 2.12 Array types in logic may be declared either with or without an explicit non-
negative length. Access to the length of a logic array can be done with \length .

//@ t ype point = s t r u c t { r e a l x; r e a l y; };

//@ t ype triangle = point [3];

//@ l o g i c point origin = { .x = 0.0 , .y = 0.0 };

/*@ l o g i c triangle t_iso = { [0] = origin ,

@ [1] = { .y = 2.0 , .x = 0.0 }

@ [2] = { .x = 2.0 , .y = 0.0 }};

@*/

/*@ l o g i c point centroid(triangle t) = {

@ .x = mean3(t[0].x,t[1].x,t[2].x);

@ .y = mean3(t[0].y,t[1].y,t[2].y);

@ };

@*/

//@ t ype polygon = point [];

/*@ l o g i c perimeter(polygon p) =

@ \sum(0, \ l e ng th (p)-1,\lambda i n t e g e r i;d(p[i],p[(i+1) % \ l e ng th (p)])) ;

@*/

Beware that because of the principle of only total functions in logic, t[i] can appear in ACSL
annotations even if i is outside the array bounds.

Functional updates

Syntax for functional update is similar to initialization of aggregate objects.

Example 2.13 Functional update of an array is done by

{ t_iso \wi th [0] = { .x = 3.0, .y = 3.0 } }

Functional update of a structure is done by
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{ origin \wi th .x = 3.0 }

There is no particular syntax for functional update of an union. For an object of an union
type, the following equality is not true

{ { object \wi th .x = 3.0 }

\wi th .y = 2.0 } == { { object \wi th .y = 2.0 }

\wi th .x = 3.0 }

The equality predicate == applies to aggregate values, but it is required that they have the
same type. Then equality amounts the recursively check equality of �elds. Equality of arrays
of di�erent lengths returns false. Beware that equality of unions is also equality of all �elds.

C aggregate types

C aggregates types (struct, union or array) naturally map to logic types, by recursively map-
ping their �elds.

Example 2.14 There is no implicit cast to type of the updated/initialized �elds.

s t r u c t S { i n t x; f l o a t y; i n t t[10]; };

//@ l o g i c i n t e g e r f( s t r u c t S s) = s.t[3];

//@ l o g i c s t r u c t S g( i n t e g e r n, s t r u c t S s) = { s \wi th .x = ( i n t )n };

Unlike in C, all �elds should be initialized:

/*@ l o g i c s t r u c t S h( i n t e g e r n, i n t a[10]) = {

@ .x = ( i n t )n, .y = ( f l o a t )0.0, .t = a

@ };

@*/

Cast and conversion

Unlike in C, there is no implicit conversion from an array type to a pointer type. On the other
hand, there is an implicit conversion from an array of a given size to an array with unspeci�ed
size (but not the converse).

Example 2.15

//@ l o g i c point square [4] = { origin , ... };

//@ ... perimeter(square ); // well typed

//@ ... centroid(square ); // wrongly typed

//@ ... centroid (( triangle)square ); // well -typed (truncation)

An explicit cast from an array type to a pointer type is allowed only for arrays that lies in C
memory. As in C, the result of the cast is the address of the �rst element of the array (see
Section 2.2.6).

Conversely, an explicit cast from a pointer type to an array type or a structure type is allowed,
and acts as collecting the values it points to.

Subtyping and cast recursively applies to �elds.

Example 2.16
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function-contract ::= requires-clause∗ terminates-clause?

decreases-clause? simple-clause∗

named-behavior∗ completeness-clause∗

requires-clause ::= requires predicate ;

terminates-clause ::= terminates pred ;

decreases-clause ::= decreases term ( for ident)? ;

simple-clause ::= assigns-clause | ensures-clause

| allocation-clause | abrupt-clause-fn

assigns-clause ::= assigns locations ;

locations ::= location (, location) ∗ | \nothing

location ::= tset

ensures-clause ::= ensures predicate ;

named-behavior ::= behavior id : behavior-body

behavior-body ::= assumes-clause∗ requires-clause∗ simple-clause∗

assumes-clause ::= assumes predicate ;

completeness-clause ::= complete behaviors (id (, id)∗)? ;

| disjoint behaviors (id (, id)∗)? ;

Figure 2.5: Grammar of function contracts

term ::= \old ( term ) old value
| \result result of a function

pred ::= \old ( pred )

Figure 2.6: \old and \result in terms

s t r u c t { f l o a t u,v; } p[10];

//@ a s s e r t centroid ((point [3])p) == ...

//@ a s s e r t perimeter ((point [])p) == ...

Precisely, conversion of a pointer p of type τ∗ to an logic array of type τ [] returns a logic
array t such that

length(t) = (\block_length(p)− \o�set (p))/ sizeof (τ)

2.2.8 String literals

2.3 Function contracts

Figure 2.5 shows a grammar for function contracts. Location denotes a memory location
and is de�ned in Section 2.3.4. Allocation-clauses allow to specify which memory location is
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dynamically allocated or deallocated by the function from the heap; they are de�ned later in
Section 2.7.3.

This section is organized as follows. First, the grammar for terms is extended with two new
constructs. Then Section 2.3.2 introduces simple contracts. Finally, Section 2.3.3 de�nes more
general contracts involving named behaviors.

The decreases and terminates clauses are presented later in Section 2.5. Abrupt-clauses allow
to specify what happens when the function does not return normally but exits abruptly; they
are de�ned in Section 2.9.

2.3.1 Built-in constructs \old and \result

Post-conditions usually require to refer to both the function result and values in the pre-state.
Thus terms are extended with the following new constructs (shown in Figure 2.6).

� \old(e) denotes the value of predicate or term e in the pre-state of the function.

� \result denotes the returned value of the function.

\old(e) and \result can be used only in ensures clauses, since the other clauses already refer
to the pre-state. In addition, \result can not be used in the contract of a function which
returns void.

C function parameters are obtained by value from actual parameters that mostly remain
unaltered by the function calls. For that reason, formal parameters in function contracts
are de�ned such that they always refer implicitly to their values interpreted in the pre-state.
Thus, \old construct is useless for formal parameters (in function contracts only).

2.3.2 Simple function contracts

A simple function contract, having only simple clauses and no named behavior, takes the
following form:

1 /*@ r e q u i r e s P1; r e q u i r e s P2; ...

2 @ a s s i g n s L1; a s s i g n s L2; ...

3 @ e n s u r e s E1; e n s u r e s E2; ...

4 @*/

The semantics of such a contract is as follows:

� The caller of the function must guarantee that it is called in a state where the property
P1 && P2 && ... holds.

� The called function returns a state where the property E1 && E2 && ... holds.

� All memory locations that are allocated in both the pre-state and the post-state1 and
do not belong to the set L1 ∪ L2 ∪ . . . are left unchanged in the post-state. The set
L1 ∪ L2 ∪ . . . itself is interpreted in the pre-state.

Having multiple requires , assigns , or ensures clauses only improves readibility since the con-
tract above is equivalent to the following simpli�ed one:

1Functions that allocate or free memory can be speci�ed with additional clauses described in section 2.7.3.
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1 /*@ r e q u i r e s P1 && P2 && ...;

2 @ a s s i g n s L1, L2,...;

3 @ e n s u r e s E1 && E2 && ...;

4 @*/

If no clause requires is given, it defaults to \true , and similarly for ensures clause. Giving no
assigns clause means that locations assigned by the function are not speci�ed, so the caller
has no information at all on this function's side e�ects. See Section 2.3.5 for more details on
default status of clauses.

Example 2.17 The following function is given a simple contract for computation of the in-
teger square root.

1 /*@ r e q u i r e s x >= 0;

2 @ e n s u r e s \ r e s u l t >= 0;

3 @ e n s u r e s \ r e s u l t * \ r e s u l t <= x;

4 @ e n s u r e s x < ( \ r e s u l t + 1) * ( \ r e s u l t + 1);

5 @*/

6 i n t isqrt( i n t x);

The contract means that the function must be called with a nonnegative argument, and returns
a value satisfying the conjunction of the three ensures clauses. Inside these ensures clauses,
the use of the construct \old(x) is not necessary, even if the function modi�es the formal
parameter x, because function calls modify a copy of the e�ective parameters, and the e�ective
parameters remain unaltered. In fact, x denotes the e�ective parameter of isqrt calls which
has the same value interpreted in the pre-state than in the post-state.

Example 2.18 The following function is given a contract to specify that it increments the
value pointed to by the pointer given as argument.

1 /*@ r e q u i r e s \ v a l i d (p);
2 @ a s s i g n s *p;

3 @ e n s u r e s *p == \o ld (*p) + 1;

4 @*/

5 vo i d incrstar( i n t *p);

The contract means that the function must be called with a pointer p that points to a safely
allocated memory location (see Section 2.7 for details on the \valid built-in predicate). It
does not modify any memory location but the one pointed to by p. Finally, the ensures clause
speci�es that the value *p is incremented by one.

2.3.3 Contracts with named behaviors

The general form of a function contract contains several named behaviors (restricted to two
behaviors, in the following, for readability).
1 /*@ r e q u i r e s P;

2 @ b eha v i o r b1:

3 @ assumes A1;

4 @ r e q u i r e s R1;

5 @ a s s i g n s L1;

6 @ e n s u r e s E1;

7 @ b eha v i o r b2:

8 @ assumes A2;

9 @ r e q u i r e s R2;

10 @ a s s i g n s L2;

11 @ e n s u r e s E2;

12 @*/

The semantics of such a contract is as follows:
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� The caller of the function must guarantee that the call is performed in a state where
the property P && (A1 ==> R1) && (A2 ==> R2) holds.

� The called function returns a state where the properties \old(Ai) ==> Ei hold for each i.

� For each i, if the function is called in a pre-state where Ai holds, then each memory
location of that pre-state that does not belong to the set Li is left unchanged in the
post-state.

requires clauses in the behaviors are proposed mainly to improve readibility (to avoid some
duplication of formulas), since the contract above is equivalent to the following simpli�ed one:
1 /*@ r e q u i r e s P && (A1 ==> R1) && (A2 ==> R2);

2 @ b eha v i o r b1:

3 @ assumes A1;

4 @ a s s i g n s L1;

5 @ e n s u r e s E2;

6 @ b eha v i o r b2:

7 @ assumes A2;

8 @ a s s i g n s L2;

9 @ e n s u r e s E2;

10 @*/

A simple contract such as
1 /*@ r e q u i r e s P; a s s i g n s L; e n s u r e s E; */

is actually equivalent to a single named behavior as follows:
1 /*@ r e q u i r e s P;

2 @ b eha v i o r <any name >:

3 @ assumes \ t r u e ;
4 @ a s s i g n s L;

5 @ e n s u r e s E;

6 @*/

Similarly, global assigns and ensures clauses are equivalent to a single named behavior. More
precisely, the following contract
1 /*@ r e q u i r e s P;

2 @ a s s i g n s L;

3 @ e n s u r e s E;

4 @ b eha v i o r b1: ...

5 @ b eha v i o r b2: ...

6 @ ...

7 @*/

is equivalent to
1 /*@ r e q u i r e s P;

2 @ b eha v i o r <any name >:

3 @ assumes \ t r u e ;
4 @ a s s i g n s L;

5 @ e n s u r e s E;

6 @ b eha v i o r b1: ...

7 @ b eha v i o r b2: ...

8 @ ...

9 @*/

Example 2.19 In the following, bsearch(t,n,v) searches for element v in array t between
indices 0 and n-1.

1 /*@ r e q u i r e s n >= 0 && \ v a l i d (t+(0..n-1));
2 @ a s s i g n s \noth ing ;
3 @ e n s u r e s -1 <= \ r e s u l t <= n-1;
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4 @ b eha v i o r success:

5 @ e n s u r e s \ r e s u l t >= 0 ==> t[ \ r e s u l t ] == v;

6 @ b eha v i o r failure:

7 @ assumes t_is_sorted : \ f o r a l l i n t e g e r k1, i n t e g e r k2;

8 @ 0 <= k1 <= k2 <= n-1 ==> t[k1] <= t[k2];

9 @ e n s u r e s \ r e s u l t == -1 ==>

10 @ \ f o r a l l i n t e g e r k; 0 <= k < n ==> t[k] != v;

11 @*/

12 i n t bsearch( doub l e t[], i n t n, doub l e v);

The precondition requires array t to be allocated at least from indices 0 to n-1. The two named
behaviors correspond respectively to the successful behavior and the failing behavior.

Since the function is performing a binary search, it requires the array t to be sorted in in-
creasing order: this is the purpose of the predicate named t_is_sorted in the assumes clause
of the behavior named failure.

See 2.4.2 for a continuation of this example.

Example 2.20 The following function illustrates the importance of di�erent assigns clauses
for each behavior.

1 /*@ b eha v i o r p_changed:

2 @ assumes n > 0;

3 @ r e q u i r e s \ v a l i d (p);
4 @ a s s i g n s *p;

5 @ e n s u r e s *p == n;

6 @ b eha v i o r q_changed:

7 @ assumes n <= 0;

8 @ r e q u i r e s \ v a l i d (q);
9 @ a s s i g n s *q;

10 @ e n s u r e s *q == n;

11 @*/

12 vo i d f( i n t n, i n t *p, i n t *q) {

13 i f (n > 0) *p = n; e l s e *q = n;

14 }

Its contract means that it assigns values pointed to by p or by q, conditionally on the sign of n.

Completeness of behaviors

In a contract with named behaviors, it is not required that the disjunction of the Ai is true,
i.e. it is not mandatory to provide a �complete� set of behaviors. If such a condition is seeked,
it is possible to add the following clause to a contract:

/*@ ...

@ complete b e h a v i o r s b1,...,bn;

@*/

It speci�es that the set of behaviors b1,. . .,bn is complete i.e. that

R ==> (A1 || A2 || ... || An)

holds, where R is the precondition of the contract. The simpli�ed version of that clause

/*@ ...

@ complete b e h a v i o r s ;
@*/

means that all behaviors given in the contract should be taken into account.

Similarly, it is not required that two distinct behaviors are disjoint. If desired, this can be
speci�ed with the following clause:
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tset ::= \empty empty set
| tset -> id

| tset . id

| * tset

| & tset

| tset [ tset ]

| term? .. term? range
| \union ( tset (, tset)∗ ) union of locations
| \inter ( tset (, tset)∗ ) intersection
| tset + tset

| ( tset )

| { tset | binders (; pred)? } set comprehension
| { term } explicit singleton
| term implicit singleton

pred ::= \subset ( tset , tset ) set inclusion

Figure 2.7: Grammar for sets of terms

/*@ ...

@ d i s j o i n t b e h a v i o r s b1,...,bn;

@*/

It means that the given behaviors are pairwise disjoint i.e. that, for all distinct i and j,

R ==> ! (Ai && Aj)

holds. The simpli�ed version of that clause

/*@ ...

@ d i s j o i n t b e h a v i o r s ;
@*/

means that all behaviors given in the contract should be taken into account. Multiple complete

and disjoint sets of behaviors can be given for the same contract.

2.3.4 Memory locations and sets of terms

There are several places where one needs to describe a set of memory locations: in assigns

clauses of function contracts, or in loop assigns clauses (see section 2.4.2). A memory location
is then any set of terms denoting a set of l-values. Moreover, a location given as argument
to an assigns clause must be a set of modi�able l-values, as described in Section A.1. More
generally, we introduce syntactic constructs to denote sets of terms which are also usefull for
\separated predicate (see Section 2.7.2)

The grammar for sets of terms is given in Figure 2.7. The semantics is given below, where s
denotes any tset.

� \empty denotes the empty set.

� a simple term denotes a singleton set.

� s->id denotes the set of x->id for each x ∈ s.
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� s.id denotes the set of x.id for each x ∈ s.

� *s denotes the set of *x for each x ∈ s.

� &s denotes the set of &x for each x ∈ s.

� s1[s2] denotes the set of x1[x2] for each x1 ∈ s1 and x2 ∈ s2.

� t1 .. t2 denotes the set of integers between t1 and t2, included. If t1 > t2, this the
same as \empty

� \union(s1,. . .,sn) denotes the union of s1,s2, . . . and sn;

� \inter (s1,. . .,sn) denotes the intersection of s1,s2, . . . and sn;

� s1+s2 denotes the set of x1+x2 for each x1 ∈ s1 and x2 ∈ s2;

� (s) denotes the same set as s;

� { s | b ; P } denotes set comprehension, that is the union of the sets denoted by s for
each value b of binders satisfying predicate P (binders b are bound in both s and P).

Note that assigns \nothing is equivalent to assigns \empty; it is left for convenience.

Example 2.21 The following function sets to 0 each cell of an array.

1 /*@ r e q u i r e s \ v a l i d (t+(0..n-1));
2 @ a s s i g n s t[0..n-1];

3 @ a s s i g n s *(t+(0..n-1));

4 @ a s s i g n s *(t+{ i | i n t e g e r i ; 0 <= i < n });

5 @*/

6 vo i d reset_array( i n t t[], i n t n) {

7 i n t i;

8 f o r (i=0; i < n; i++) t[i] = 0;

9 }

It is annotated with three equivalent assigns clauses, each one specifying that only the set of
cells {t[0],. . .,t[n-1]} is modi�ed.

Example 2.22 The following function increments each value stored in a linked list.

1 s t r u c t list {

2 i n t hd;

3 s t r u c t list *next;

4 };

5

6 // reachability in linked lists

7 /*@ i n d u c t i v e reachable{L}( s t r u c t list *root , s t r u c t list *to) {

8 @ ca se empty{L}: \ f o r a l l s t r u c t list *l; reachable(l,l) ;

9 @ ca se non_empty{L}: \ f o r a l l s t r u c t list *l1 ,*l2;

10 @ \ v a l i d (l1) && reachable(l1->next ,l2) ==> reachable(l1,l2) ;

11 @ }

12 */

13

14 // The requires clause forbids to give a circular list

15 /*@ r e q u i r e s reachable(p, \ n u l l );
16 @ a s s i g n s { q->hd | s t r u c t list *q ; reachable(p,q) } ;

17 @*/

18 vo i d incr_list( s t r u c t list *p) {

19 wh i l e (p) { p->hd++ ; p = p->next; }

20 }

The assigns clause speci�es that the set of modi�ed memory locations is the set of �elds q->hd
for each pointer q reachable from p following next �elds. See Section 2.6.3 for details about
the declaration of the predicate reachable.
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compound-statement ::= { declaration∗ statement∗ assertion+ }

statement ::= assertion statement

assertion ::= /*@ assert pred ; */

| /*@ for id (, id)∗ : assert pred ; */

Figure 2.8: Grammar for assertions

2.3.5 Default contracts, multiple contracts

A C function can be de�ned only once but declared several times. It is allowed to annotate
each of these declarations with contracts. Those contracts are seen as a single contract with
the union of the requires clauses and behaviors.

On the other hand, a function may have no contract at all, or a contract with missing clauses.
Missing requires and ensures clauses default to \true . If no assigns clause is given, it remains
unspeci�ed. If the function under consideration has only a declaration but no body, then
it means that it potentially modi�es �everything�, hence in practice it will be impossible to
verify anything about programs calling that function; in other words giving it a contract is
in practice mandatory. On the other hand, if that function has a body, giving no assigns

clause means in practice that it is left to tools to compute an over-approximation of the sets
of assigned locations.

2.4 Statement annotations

Annotations on C statements are of three kinds:

� Assertions: allowed before any C statement or at end of blocks.

� Loop annotations: invariant , assigns clause, variant ; allowed before any loop statement:
while , for , and do ... while.

� Statement contracts: allowed before any C statement, specifying their behavior in a
similar manner to C function contracts.

2.4.1 Assertions

The syntax of assertions is given in Figure 2.8, as an extension of the grammar of C statements.

� assert P means that P must hold in the current state (the sequence point where the
assertion occurs).

� The variant for id1,. . .,idk: assert P associates the assertion to the named behaviors
idi, each of them being a behavior identi�er for the current function (or a behavior of
an enclosing block as de�ned later in Section 2.4.4). It means that this assertion must
hold only for the considered behaviors.
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statement ::= /*@ loop-annot */

while ( expr ) statement

| /*@ loop-annot */

for ( expr ; expr ; expr )

statement

| /*@ loop-annot */

do statement

while ( expr ) ;

loop-annot ::= loop-clause∗ loop-behavior∗

loop-variant?

loop-clause ::= loop-invariant | loop-assigns

| loop-allocation

loop-invariant ::= loop invariant pred ;

loop-assigns ::= loop assigns locations ;

loop-behavior ::= for id (, id)∗ : loop-clause∗ annotation for behavior id

loop-variant ::= loop variant term ;

| loop variant term for id ; variant for relation id

Figure 2.9: Grammar for loop annotations

2.4.2 Loop annotations

The syntax of loop annotations is given in Figure 2.9, as an extension of the grammar of C
statements. Loop-allocation clauses allow to specify which memory location is dynamically
allocated or deallocated by a loop from the heap; they are de�ned later in Section 2.7.3.

Loop invariants and loop assigns

The semantics of loop invariants and loop assigns is de�ned as follows: a simple loop annota-
tion of the form

1 /*@ l oop i n v a r i a n t I;

2 @ l oop a s s i g n s L;

3 @*/

4 ...

speci�es that the following conditions hold.

� The predicate I holds before entering the loop (in the case of a for loop, this means
right after the initialization expression).

� The predicate I is an inductive invariant, that is if I is assumed true in some state
where the condition c is also true, and if execution of the loop body in that state ends
normally at the end of the body or with a continue statement, I is true in the resulting
state. If the loop condition has side e�ects, these are included in the loop body in a
suitable way:

� for a while (c) s loop, I must be preserved by the side-e�ects of c followed by s;
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� for a for(init;c;step) s loop, I must be preserved by the side-e�ects of c followed
by s followed by step;

� for a do s while (c); loop, I must be preserved by s followed by the side-e�ects of
c.

Note that if c has side-e�ects, the invariant might not be true at the exit of the loop:
the last �step� starts from a state where I holds, performs the side-e�ects of c, which
in the end evaluates to false and exits the loop. Likewise, if a loop is exited through a
break statement, I does not necessarily hold, as side e�ects may occur between the last
state in which I was supposed to hold and the break statement.

� At any loop iteration, any location that was allocated before entering the loop, and is
not member of L (interpreted in the current state) has the same value as before entering
the loop. In fact, the loop assigns clause speci�es an inductive invariant for the locations
that are not member of L.

Loop behaviors

A loop annotation preceded by for id_1,. . .,id_k: is similar as above, but applies only for
behaviors id_1,. . .,id_k of the current function, hence in particular holds only under the
assumption of their assumes clauses.

Remarks

� The \old construct is not allowed in loop annotations. The \at form should be used to
refer to another state (see Section 2.4.3).

� When a loop exits with break or return or goto, it is not required that the loop invariant
holds. In such cases, locations that are not member of L can be assigned between the
end of the previous iteration and the exit statement.

Example 2.23 Here is a continuation of example 2.19. Note the use of a loop invariant
associated to a function behavior.

1 /*@ r e q u i r e s n >= 0 && \ v a l i d (t+(0..n-1));
2 @ a s s i g n s \noth ing ;
3 @ e n s u r e s -1 <= \ r e s u l t <= n-1;

4 @ b eha v i o r success:

5 @ e n s u r e s \ r e s u l t >= 0 ==> t[ \ r e s u l t ] == v;

6 @ b eha v i o r failure:

7 @ assumes t_is_sorted : \ f o r a l l i n t e g e r k1, i n t k2;

8 @ 0 <= k1 <= k2 <= n-1 ==> t[k1] <= t[k2];

9 @ e n s u r e s \ r e s u l t == -1 ==>

10 @ \ f o r a l l i n t e g e r k; 0 <= k < n ==> t[k] != v;

11 @*/

12 i n t bsearch( doub l e t[], i n t n, doub l e v) {

13 i n t l = 0, u = n-1;

14 /*@ l oop i n v a r i a n t 0 <= l && u <= n-1;

15 @ f o r failure: l oop i n v a r i a n t
16 @ \ f o r a l l i n t e g e r k; 0 <= k < n && t[k] == v ==> l <= k <= u;

17 @*/

18 wh i l e (l <= u ) {

19 i n t m = l + (u-l)/2; // better than (l+u)/2

20 i f (t[m] < v) l = m + 1;

21 e l s e i f (t[m] > v) u = m - 1;

22 e l s e r e t u r n m;

23 }

24 r e t u r n -1;

25 }
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assertion ::= /*@ invariant pred ; */

| /*@ for id (, id)∗ : invariant pred ; */

Figure 2.10: Grammar for general inductive invariants

Loop variants

Optionally, a loop annotation may include a loop variant of the form
/*@ l oop v a r i a n t m; */

where m is a term of type integer .

The semantics is as follows: for each loop iteration that terminates normally or with continue ,
the value of m at end of the iteration must be smaller that its value at the beginning of the
iteration. Moreover, its value at the beginning of the iteration must be nonnegative. Note
that the value of m at loop exit might be negative. It does not compromise termination of the
loop. Here is an example:

Example 2.24

1 vo i d f( i n t x) {

2 //@ l oop v a r i a n t x;

3 wh i l e (x >= 0) {

4 x -= 2;

5 }

6 }

It is also possible to specify termination orderings other than the usual order on integers,
using the additional for modi�er. This is explained in Section 2.5.

General inductive invariants

It is actually allowed to pose an inductive invariant anywhere inside a loop body. For example,
it makes sense for a do s while (c); loop to contain an invariant right after statement s. Such
an invariant is a kind of assertion, as shown in Figure 2.10.

Example 2.25 In the following example, the natural invariant holds at this point (\max and
\lambda are introduced later in Section 2.6.7). It would be less convenient to set an invariant
at the beginning of the loop.

1 /*@ r e q u i r e s n > 0 && \ v a l i d (t+(0..n-1));
2 @ e n s u r e s \ r e s u l t == \max(0,n-1,( \lambda i n t e g e r k ; t[k]));

3 @*/

4 doub l e max( doub l e t[], i n t n) {

5 i n t i = 0; doub l e m,v;

6 do {

7 v = t[i++];

8 m = v > m ? v : m;

9 /*@ i n v a r i a n t m == \max(0,i-1,( \lambda i n t e g e r k ; t[k])); */

10 } wh i l e (i < n);

11 r e t u r n m;

12 }

More generally, loops can be introduced by gotos. As a consequence, such invariants may occur
anywhere inside a function's body. The meaning is that the invariant holds at that point,
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much like an assert . Moreover, the invariant must be inductive, i.e. it must be preserved
across a loop iteration. Several invariants are allowed at di�erent places in a loop body. These
extensions are useful when dealing with complex control �ows.

Example 2.26 Here is a program annotated with an invariant inside the loop body:

1 /*@ r e q u i r e s n > 0;

2 @ e n s u r e s \ r e s u l t == \max(0,n-1,\lambda i n t e g e r k; t[k]);

3 @*/

4 doub l e max_array( doub l e t[], i n t n) {

5 doub l e m; i n t i=0;

6 goto L;

7 do {

8 i f (t[i] > m) { L: m = t[i]; }

9 /*@ i n v a r i a n t
10 @ 0 <= i < n && m == \max(0,i,\lambda i n t e g e r k; t[k]);

11 @*/

12 i++;

13 }

14 wh i l e (i < n);

15 r e t u r n m;

16 }

The control-�ow graph of the code is as follows

invdo

i← 0

m← t[i]

i← i+ 1

i ≥ n

i < n

m < t[i]

m ≥ t[i]

The invariant is inductively preserved by the two paths that go from node �inv� to itself.

Example 2.27 The program

1 i n t x = 0;

2 i n t y = 10;

3

4 /*@ l oop i n v a r i a n t 0 <= x < 11;

5 @*/

6 wh i l e (y > 0) {

7 x++;

8 y--;

9 }

is not correctly annotated, even if it is true that x remains smaller than 11 during the execution.
This is because it is not true that the property x<11 is preserved by the execution of x++ ; y--;.
A correct loop invariant could be 0 <= x < 11 && x+y == 10. It holds at loop entrance and is
preserved (under the assumption of the loop condition y>0).

Similarly, the following general invariants are not inductive:
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1 i n t x = 0;

2 i n t y = 10;

3

4 wh i l e (y > 0) {

5 x++;

6 //@ i n v a r i a n t 0 < x < 11;

7 y--;

8 //@ i n v a r i a n t 0 <= y < 10;

9 }

since 0 <= y < 10 is not a consequence of hypothesis 0 < x < 11 after executing y--; and
0 < x < 11 cannot be deduced from 0 <= y < 10 after looping back through the condition y>0

and executing x++. Correct invariants could be:

1 wh i l e (y > 0) {

2 x++;

3 //@ i n v a r i a n t 0 < x < 11 && x+y == 11;

4 y--;

5 //@ i n v a r i a n t 0 <= y < 10 && x+y == 10;

6 }

2.4.3 Built-in construct \at

Statement annotations usually need another additional construct \at(e,id) referring to the
value of the expression e in the state at label id. In particular, for a C array of int , t,
\at(t,id) is a logical array whose content is the same as the one of t in state at label id. It
is thus very di�erent from \at(( int *)t,id), which is a pointer to the �rst element of t (and
stays the same between the state at id and the current state). Namely, if t[0] has changed
since id, we have \at(t,id)[0] != \at((int *)t,id)[0].

The label id can be either a regular C label, or a label added within a ghost statement as
described in Section 2.12. This label must be declared in the same function as the occurrence
of \at(e,id), but unlike gotos, more restrictive scoping rules must be respected:

� the label id must occur before the occurrence of \at(e,id) in the source;

� the label id must not be inside an inner block.

These rules are exactly the same rules as for the visibility of local variables within C statements
(see [13], Section A11.1).

Default logic labels

There are six prede�ned logic labels: Pre, Here, Old, Post, LoopEntry and LoopCurrent. \old(e)

is in fact syntactic sugar for \at(e,Old).

� The label Here is visible in all statement annotations, where it refers to the state
where the annotation appears; and in all contracts, where it refers to the pre-state for
the requires , assumes, assigns , variant , terminates , clauses and the post-state for other
clauses. It is also visible in data invariants, presented in Section 2.11.

� The label Old is visible in assigns and ensures clauses of all contracts (both for functions
and for statement contracts described below in Section 2.4.4), and refers to the pre-state
of this contract.

� The label Pre is visible in all statement annotations, and refers to the pre-state of the
function it occurs in.
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� The label Post is visible in assigns and ensures clauses of all contracts, and it refers to
the post-state.

� The label LoopEntry is visible in loop annotations and all annotations related to a
statement enclosed in a loop. It refers to the state just before entering that loop for the
�rst time �but after initialization took place in the case of a for loop, as for loop invariant

(section 2.4.2). When LoopEntry is used in a statement enclosed in nested loops, it refers
to the innermost loop containing that statement.

� The label LoopCurrent is visible in loop annotations and all other annotations related to
a statement enclosed in a loop. It refers to the state at the beginning of the current step
of the loop (see section 2.4.2 for more details on what constitutes a loop step in presence
of side-e�ects in the condition). When LoopCurrent is used in a statement enclosed in
nested loops, it refers to the innermost loop containing that statement.

Inside loop annotations, the labels LoopCurrent and Here are equivalent, except inside clauses
loop frees (see section 2.7.3) where Here is equivalent to LoopEntry.

There is one particular case for assigns and ensures clauses of function contracts where formal
parameters of functions cannot refer to the label Post. In such clauses formal parameters
always refer implicitly to the label Pre, and any \at construct can modify the interpretation
of formal parameters.

No logic label is visible in global logic declarations such as lemmas, axioms, de�nition of
predicate or logic functions. When such an annotation needs to refer to a given memory
state, it has to be given a label binder: this is described in Section 2.6.9.

Example 2.28 The code below implements the famous extended Euclid's algorithm for com-
puting the greatest common divisor of two integers x and y, while computing at the same time
two Bézout coe�cients p and q such that p × x + q × y = gcd(x, y). The loop invariant for
the Bézout property needs to refer to the value of x and y in the pre-state of the function.

1 /*@ r e q u i r e s x >= 0 && y >= 0;

2 @ b eha v i o r bezoutProperty:

3 @ e n s u r e s (*p)*x+(*q)*y == \ r e s u l t ;
4 @*/

5 i n t extended_Euclid( i n t x, i n t y, i n t *p, i n t *q) {

6 i n t a = 1, b = 0, c = 0, d = 1;

7 /*@ l oop i n v a r i a n t x >= 0 && y >= 0 ;

8 @ f o r bezoutProperty: l oop i n v a r i a n t
9 @ a* \at (x,Pre)+b* \at (y,Pre) == x &&

10 @ c* \at (x,Pre)+d* \at (y,Pre) == y ;

11 @ l oop v a r i a n t y;

12 @*/

13 wh i l e (y > 0) {

14 i n t r = x % y;

15 i n t q = x / y;

16 i n t ta = a, tb = b;

17 x = y; y = r;

18 a = c; b = d;

19 c = ta - c * q; d = tb - d * q;

20 }

21 *p = a; *q = b;

22 r e t u r n x;

23 }

Example 2.29 Here is a toy example illustrating tricky issues with \at and labels:
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statement ::= /*@ statement-contract */ statement

statement-contract ::= ( for id (, id)∗ :)? requires-clause∗

simple-clause-stmt∗ named-behavior-stmt∗

simple-clause-stmt ::= simple-clause

| allocation-clause | abrupt-clause-stmt

named-behavior-stmt ::= behavior id : behavior-body-stmt

behavior-body-stmt ::= assumes-clause∗

requires-clause∗ simple-clause-stmt∗

Figure 2.11: Grammar for statement contracts

1 i n t i;

2 i n t t[10];

3

4 //@ e n s u r e s 0 <= \ r e s u l t <= 9;

5 i n t any ();

6

7 /*@ a s s i g n s i,t[ \at (i,Post )];
8 @ e n s u r e s
9 @ t[i] == \o ld (t[ \at (i,Here )]) + 1;

10 @ e n s u r e s
11 @ \ l e t j = i; t[j] == \o ld (t[j]) + 1;

12 @*/

13 vo i d f() {

14 i = any();

15 t[i]++;

16 }

The two ensures clauses are equivalent. The simpler clause t[i] == \old(t[i]) + 1 would be
wrong because in \old(t[i]), i denotes the value of i n the pre-state.

Also, the assigns clause i,t[i] would be wrong too because again in t[i], the value of i in the
pre-state is considered.

Example 2.30 Here is an example illustrating the use of LoopEntry and LoopCurrent

1 i n t f ( i n t n) {

2 f o r ( i n t i = 0; i < n; i++) {

3 /*@ a s s e r t \at (i,LoopInit) == 0; */

4 i n t j = 0;

5 wh i l e (j++ < i) {

6 /*@ a s s e r t \at (j,LoopInit) == 0; */

7 /*@ a s s e r t \at (j,LoopCurrent) + 1 == j; */

8 }

9 }

10 }

2.4.4 Statement contracts

The grammar for statement contracts is given in Figure 2.11. It is similar to function contracts,
but without decreases clause. Additionally, a statement contract may refer to enclosing named
behaviors, with the form for id:.... Such contracts are only valid for the corresponding
behaviors, in particular only under the corresponding assumes clause.

The ensures clause does not constrain the post-state when the annotated statement is termi-
nated by a goto jumping out of it, by a break, continue or return statement, or by a call to the
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exit function. To specify such behaviors, abrupt clauses (described in Section 2.9) need to
be used.

On the other hand, it is di�erent with assigns clauses. The locations having their value
modi�ed during the path execution, starting at the begining of the annoted statement and
leading to a goto jumping out of it, should be part of its assigns clause.

Example 2.31 The clause assigns \nothing; does not hold for that statement, even if the
clause ensures x==\old(x); holds:

1 /*@ a s s i g n s x;

2 @ e n s u r e s x== \o ld (x);
3 @*/

4 i f (c) {

5 x++;

6 goto L;

7 }

8 L: ...

Allocation-clauses allow to specify which memory location is dynamically allocated or deal-
located by the annotated statement from the heap; they are de�ned later in Section 2.7.3.

2.5 Termination

The property of termination concerns both loops and recursive function calls. Termination
is guaranteed by attaching a measure function to each loop (aspect already addressed in
Section 2.4.2) and each recursive function. By default, a measure is an integer expression,
and measures are compared using the usual ordering over integers (Section 2.5.1). It is also
possible to de�ne measures into other domains and/or using a di�erent ordering relation
(Section 2.5.2).

2.5.1 Integer measures

Functions are annotated with integer measures with the syntax
//@ d e c r e a s e s e;

and loops are annotated similarly with the syntax
//@ l oop v a r i a n t e;

where the logic expression e has type integer . For recursive calls, or for loops, this expression
must decrease for the relation R de�ned by

R(x,y) <==> x > y && x >= 0.

In other words, the measure must be a decreasing sequence of integers which remain nonneg-
ative, except possibly for the last value of the sequence (See example 2.24).

Example 2.32 The clause loop variant u-l; can be added to the loop annotations of the
example 2.23. The measure u-l decreases at each iteration, and remains nonnegative, except
at the last iteration where it may become negative.

16 @ ...

17 @ l oop v a r i a n t u-l; */

18 wh i l e ...
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2.5.2 General measures

More general measures on other types can be provided, using the keyword for . For functions
it becomes

//@ d e c r e a s e s e f o r R;

and for loops

//@ l oop v a r i a n t e f o r R;

In those cases, the logic expression e has some type τ and R must be relation on τ , that is a
binary predicate declared (see Section 2.6 for details) as

//@ p r e d i c a t e R(τ x, τ y) · · ·

Of course, to guarantee termination, it must be proved that R is a well-founded relation.

Example 2.33 The following example illustrates a variant annotation using a pair of inte-
gers, ordered lexicographically.

1 //@ e n s u r e s \ r e s u l t >= 0;

2 i n t dummy ();

3

4 //@ t ype intpair = ( i n t e g e r , i n t e g e r );
5

6 /*@ p r e d i c a t e lexico(intpair p1, intpair p2) =

7 @ \ l e t (x1 ,y1) = p1 ;

8 @ \ l e t (x2 ,y2) = p2 ;

9 @ x1 < x2 && 0 <= x2 ||

10 @ x1 == x2 && 0 <= y2 && y1 < y2;

11 @*/

12

13 //@ r e q u i r e s x >= 0 && y >= 0;

14 vo i d f( i n t x, i n t y) {

15 /*@ l oop i n v a r i a n t x >= 0 && y >= 0;

16 @ l oop v a r i a n t (x,y) f o r lexico;

17 @*/

18 wh i l e (x > 0 && y > 0) {

19

20 i f (dummy ()) {

21 x--; y = dummy ();

22 }

23 e l s e y--;

24 }

25 }

2.5.3 Recursive function calls

The precise semantics of measures on recursive calls, especially in the general case of mutually
recursive functions, is given as follows. We call cluster a set of mutually recursive functions
which is a strongly connected component of the call graph. Within each cluster, each function
must be annotated with a decreases clause with the same relation R (syntactically). Then,
in the body of any function f of that cluster, any recursive call to a function g must occur
in a state where the measure attached to g is smaller (w.r.t R) than the measure of f in the
pre-state of f. This also applies when g is f itself.

Example 2.34 Here are the classical factorial and Fibonacci functions:
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1

2 /*@ r e q u i r e s n <= 12;

3 @ d e c r e a s e s n;

4 @*/

5 i n t fact( i n t n) {

6 i f (n <= 1) r e t u r n 1;

7 r e t u r n n * fact(n-1);

8 }

9

10 //@ d e c r e a s e s n;

11 i n t fib( i n t n) {

12 i f (n <= 1) r e t u r n 1;

13 r e t u r n fib(n-1) + fib(n-2);

14 }

Example 2.35 This example illustrates mutual recursion:

1 /*@

2 r e q u i r e s n>=0;

3 d e c r e a s e s n;

4 */

5 i n t even( i n t n) {

6 i f (n == 0) r e t u r n 1;

7 r e t u r n odd(n-1);

8 }

9

10 /*@

11 r e q u i r e s x>=0;

12 d e c r e a s e s x;

13 */

14 i n t odd( i n t x) {

15 i f (x == 0) r e t u r n 0;

16 r e t u r n even(x-1);

17 }

2.5.4 Non-terminating functions

Experimental

There are cases where a function is not supposed to terminate. For instance, the main function
of a reactive program might be a while(1) which inde�nitely waits for an event to process.
More generally, a function can be expected to terminate only if some preconditions are met.
In those cases, a terminates clause can be added to the contract of the function, under the
following form:

//@ t e rm i n a t e s p;

The semantics of such a clause is as follows: if p holds, then the function is guaranteed to
terminate (more precisely, its termination must be proved). If such a clause is not present (and
in particular if there is no function contract at all), it defaults to terminates \true; that is the
function is supposed to always terminate, which is the expected behavior of most functions.

Note that nothing is speci�ed for the case where p does not hold: the function may terminate
or not. In particular, terminates \false ; does not imply that the function loops forever. A
possible speci�cation for a function that never terminates is the following:

1 /*@ e n s u r e s \ f a l s e ;
2 t e rm i n a t e s \ f a l s e ;
3 */

4 vo i d f() { wh i l e (1); }
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C-global-decl ::= /*@ logic-def + */

logic-def ::= logic-const-def

| logic-function-def

| predicate-def

| lemma-def

type-var ::= id

type-expr ::= type-var type variable
| id

< type-expr

(, type-expr)∗ > polymorphic type

type-var-binders ::= < type-var

(, type-var)∗ >

poly-id ::= id normal identi�er
| id type-var-binders polymorphic object identi�er

logic-const-def ::= logic type-expr

poly-id = term ;

logic-function-def ::= logic type-expr

poly-id parameters =

term ;

predicate-def ::= predicate

poly-id parameters? =

pred ;

parameters ::= ( parameter

(, parameter)∗ )

parameter ::= type-expr id

lemma-decl ::= lemma poly-id :

pred ;

Figure 2.12: Grammar for global logic de�nitions

Example 2.36 A concrete example of a function that may not always terminate is the
incr_list function of example 2.22. In fact, The following contract is also acceptable for
this function:

1 // this time , the specification accepts circular lists , but does not ensure

2 // that the function terminates on them (as a matter of fact , it does not).

3 /*@ t e rm i n a t e s reachable(p, \ n u l l );
4 @ a s s i g n s { q->hd | s t r u c t list *q ; reachable(p,q) } ;

5 @*/

6 vo i d incr_list( s t r u c t list *p) {

7 wh i l e (p) { p->hd++ ; p = p->next; }

8 }

2.6 Logic speci�cations
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logic-def ::= inductive-def

inductive-def ::= inductive

poly-id parameters? { indcase∗ }

indcase ::= case poly-id : pred ;

Figure 2.13: Grammar for inductive de�nitions

The language of logic expressions used in annotations can be extended by declarations of new
logic types, and new constants, logic functions and predicates. These declarations follows the
classical setting of algebraic speci�cations. The grammar for these declarations is given in
Figure 2.12.

2.6.1 Predicate and function de�nitions

New functions and predicates can be de�ned by explicit expressions, given after an equal sign.

Example 2.37 The following de�nitions

1 //@ p r e d i c a t e is_positive( i n t e g e r x) = x > 0;

2 /*@ l o g i c i n t e g e r get_sign( r e a l x) =

3 @ x > 0.0 ? 1 : ( x < 0.0 ? -1 : 0);

4 @*/

illustrates the de�nition of a new predicate is_positive with an integer parameter, and a new
logic function sign with a real parameter returning an integer.

2.6.2 Lemmas

Lemmas are user-given propositions, a facility that might help theorem provers to establish
validity of ACSL speci�cations.

Example 2.38 The following lemma

1 //@ lemma mean_property: \ f o r a l l i n t e g e r x,y; x <= y ==> x <= (x+y)/2 <= y;

is a useful hint for program like binary search.

Of course, a complete veri�cation of an ACSL speci�cation has to provide a proof for each
lemma.

2.6.3 Inductive predicates

A predicate may also be de�ned by an inductive de�nition. The grammar for those style of
de�nitions is given on Figure 2.13.

In general, an inductive de�nition of a predicate P has the form
1 /*@ i n d u c t i v e P(x1,. . .,xn) {

2 @ ca se c1 : p1;

3 ...

4 @ ca se ck : pk;

5 @ }

6 @*/
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where each ci is an identi�er and each pi is a proposition.

The semantics of such a de�nition is that P is the least �xpoint of the cases, i.e. is the
smallest predicate (in the sense that it is false the most often) satisfying the propositions
p1, . . . ,pk. With this general form, the existence of a least �xpoint is not guaranteed, so tools
might enforce syntactic conditions on the form of inductive de�nitions. A standard syntactic
restriction could be to allow only propositions pi of the form

\ f o r a l l y1,...,ym, h1 ==> · · · ==> hl ==> P(t1,...,tn)

where P occurs only positively in hypotheses h1, . . . ,hl (de�nite Horn clauses, http://en.

wikipedia.org/wiki/Horn_clause).

Example 2.39 The following introduce a predicate isgcd(x,y,d) meaning that d is the great-
est common divisor of x and y.

1 /*@ i n d u c t i v e is_gcd( i n t e g e r a, i n t e g e r b, i n t e g e r d) {

2 @ ca se gcd_zero:

3 @ \ f o r a l l i n t e g e r n; is_gcd(n,0,n);

4 @ ca se gcd_succ:

5 @ \ f o r a l l i n t e g e r a,b,d; is_gcd(b, a % b, d) ==> is_gcd(a,b,d);

6 @ }

7 @*/

This de�nition uses de�nite Horn clauses, hence is consistent.

Example 2.22 already introduced an inductive de�nition of reachability in linked-lists, and
was also bases on de�nite Horn clauses thus consistent.

2.6.4 Axiomatic de�nitions

Instead of an explicit de�nition, one may introduce an axiomatic de�nitions for a set of types,
predicates and logic functions, which amounts to declare the expected pro�les and a set of
axioms. The grammar for those constructions is given on Figure 2.14.

Example 2.40 The following axiomatization introduce a theory of �nite lists of integers a la
LISP.

1 /*@ ax i oma t i c IntList {

2 @ t ype int_list;

3 @ l o g i c int_list nil;

4 @ l o g i c int_list cons( i n t e g e r n,int_list l);

5 @ l o g i c int_list append(int_list l1,int_list l2);

6 @ axiom append_nil:

7 @ \ f o r a l l int_list l; append(nil ,l) == l;

8 @ axiom append_cons:

9 @ \ f o r a l l i n t e g e r n, int_list l1 ,l2;

10 @ append(cons(n,l1),l2) == cons(n,append(l1,l2));

11 @ }

12 @*/

Like inductive de�nitions, there is no syntactic conditions which would guarantee axiomatic
de�nitions to be consistent. It is usually up to the user to ensure that the introduction of
axioms does not lead to a logical inconsistency.

Example 2.41 The following axiomatization
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logic-def ::= axiomatic-decl

axiomatic-decl ::= axiomatic id { logic-decl∗ }

logic-decl ::= logic-def

| logic-type-decl

| logic-const-decl

| logic-predicate-decl

| logic-function-decl

| axiom-decl

logic-type-decl ::= type logic-type ;

logic-type ::= id

| id type-var-binders polymorphic type

logic-const-decl ::= logic type-expr poly-id ;

logic-function-decl ::= logic type-expr

poly-id parameters ;

logic-predicate-decl ::= predicate

poly-id parameters? ;

axiom-decl ::= axiom poly-id : pred ;

Figure 2.14: Grammar for axiomatic declarations

1 /*@ ax i oma t i c sign {

2 @ l o g i c i n t e g e r get_sign( r e a l x);

3 @ axiom sign_pos: \ f o r a l l r e a l x; x >= 0. ==> get_sign(x) == 1;

4 @ axiom sign_neg: \ f o r a l l r e a l x; x <= 0. ==> get_sign(x) == -1;

5 @ }

6 @*/

is inconsistent since it implies sign(0.0) == 1 and sign(0.0) == -1, hence -1 == 1

2.6.5 Polymorphic logic types

Experimental

We consider here an algebraic speci�cation setting based on multi-sorted logic, where types
can be polymorphic that is parametrized by other types. For example, one may declare the
type of polymorphic lists as

1 //@ t ype list <A>;

One can then consider for instance list of integers (list < integer>), list of pointers (e.g.
list <char*>), list of list of reals (list<list <real> >2), etc.

The grammar of Figure 2.12 contains rules for declaring polymorphic types and using poly-
morphic type expressions.

2In this latter case, note that the two '>' must be separated by a space, to avoid confusion with the shift

operator.
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term ::= \lambda binders ; term abstraction
| ext-quanti�er ( term , term , term )

ext-quanti�er ::= \max | \min | \sum

| \product | \numof

Figure 2.15: Grammar for higher-order constructs

2.6.6 Recursive logic de�nitions

Explicit de�nitions of logic functions and predicates can be recursive. Declarations in the
same bunch of logic declarations are implicitly mutually recursive, so that mutually recursive
functions are possible too.

Example 2.42 The following logic declaration

1 /*@ l o g i c i n t e g e r max_index{L}( i n t t[], i n t e g e r n) =

2 @ (n==0) ? 0 :

3 @ (t[n -1]==0) ? n : max_index(t, n-1);

4 @*/

de�nes a logic function which returns the maximal index i between 0 and n-1 such that t[i]=0.

There is no syntactic condition on such recursive de�nitions, such as limitation to prim-
itive recursion. In essence, a recursive de�nition of the form f(args) = e; where f oc-
curs in expression e is just a shortcut for an axiomatic declaration of f with an axiom
\forall args; f(args) = e. In other words, recursive de�nitions are not guaranteed to be
consistent, in the same way that axiomatics may introduce inconsistency. Of course, tools
might provide a way to check consistency.

2.6.7 Higher-order logic constructions

Experimental

Figure 2.15 introduces new term constructs for higher-order logic.

Abstraction The term \lambda τ1 x1,. . .,τn xn; t denotes the n-ary logic function which
maps x1, . . . ,xn to t. It has the same precedence as \forall and \exists

Extended quanti�ers Terms \quant(t1,t2,t3) where quant is max, min, sum, product or
numof are extended quanti�cations. t1 and t2 must have type integer , and t3 must be a
unary function with an integer argument, and a numeric value (integer or real) except
for \numof for which it should have a boolean value. Their meanings are given as follows:

\max(i,j,f) = max{f( i ), f( i+1), . . . , f( j)}
\min(i,j,f) = min{f( i ), f( i+1), . . . , f( j)}
\sum(i,j,f) = f( i ) + f( i+1) + · · ·+ f( j)

\product(i,j,f) = f( i ) × f( i+1)× · · · × f( j)
\numof(i,j,f) = #{k | i ≤ k ≤ j ∧ f(k)}

= \sum(i,j,\lambda integer k ; f(k) ? 1 : 0)

If i>j then \sum and \numof above are 0, \product is 1, and \max and \min are unspeci�ed
(see Section 2.2.2).
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Example 2.43 Function that sums the element of an array of doubles.

1 /*@ r e q u i r e s n >= 0 && \ v a l i d (t+(0..n-1)) ;

2 @ e n s u r e s \ r e s u l t == \sum(0,n-1,\lambda i n t e g e r k; t[k]);

3 @*/

4 doub l e array_sum( doub l e t[], i n t n) {

5 i n t i;

6 doub l e s = 0.0;

7 /*@ l oop i n v a r i a n t 0 <= i <= n;

8 @ l oop i n v a r i a n t s == \sum(0,i-1,\lambda i n t e g e r k; t[k]);

9 @ l oop v a r i a n t n-i;

10 */

11 f o r (i=0; i < n; i++) s += t[i];

12 r e t u r n s;

13 }

2.6.8 Concrete logic types

Experimental

Logic types may not only be declared but also be given a de�nition. De�ned logic types can
be either record types, or sum types. These de�nitions may be recursive. For record types,
the �eld access notation t.id can be used, and for sum types, a pattern-matching construction
is available. Grammar rules for these additional constructions are given in Figure 2.16

Example 2.44 The declaration

1 //@ t ype list <A> = Nil | Cons(A,list <A>);

introduces a concrete de�nition of �nite lists. The logic de�nition

1 /*@ l o g i c i n t e g e r list_length <A>(list <A> l) =

2 @ \match l {

3 @ ca se Nil : 0

4 @ ca se Cons(h,t) : 1+ list_length(t)

5 @ };

6 @*/

de�nes the length of a list by recursion and pattern-matching.

2.6.9 Hybrid functions and predicates

Logic functions and predicates may take both (pure) C types and logic types arguments. Such
an hybrid predicate (or function) can either be de�ned with the same syntax as before (or
axiomatized).

Be it de�ned either directly by an expression or through a set of axioms, an hybrid function (or
predicate) usually depends on one or more program points, because it depends upon memory
states, via expressions such as:

� pointer dereferencing: *p, p->f;

� array access: t[i];

� address-of operator: &x;

� built-in predicate depending on memory: \valid
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logic-def ::= type logic-type =
logic-type-def ;

logic-type-def ::= record-type | sum-type

| type-expr type abbreviation

record-type ::= { type-expr id

( ; type-expr id)∗ ;? }

sum-type ::= |? constructor

( | constructor)∗

constructor ::= id constant constructor
| id

( type-expr

(, type-expr)∗ ) non-constant constructor

type-expr ::= ( type-expr

(, type-expr)+ ) product type

term ::= term . id record �eld access
| \match term

{ match-cases } pattern-matching
| ( term (, term)+ ) tuples
| { (. id = term ;)+ } records
| \let ( id (, id)+ ) =

term ; term

match-cases ::= match-case+

match-case ::= case pat : term

pat ::= id constant constructor
| id ( pat ( , pat)∗ ) non-constant constructor
| pat | pat or pattern
| _ any pattern
| cst numeric constant
| { (. id = pat)∗ } record pattern
| ( pat ( , pat )∗ ) tuple pattern
| pat as id pattern binding

Figure 2.16: Grammar for concrete logic types and pattern-matching

poly-id ::= id normal identi�er
| id type-var-binders identi�er for polymorphic object
| id label-binders normal identi�er with labels
| id label-binders

type-var-binders polymorphic identi�er with labels

label-binders ::= { id (, id)∗ }

Figure 2.17: Grammar for logic declarations with labels
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To make such a de�nition safe, it is mandatory to add after the declared identi�er a set of
labels, between curly braces, as shown on Figure 2.17. Expressions as above must then be
enclosed into the \at construct to refer to a given label. However, to ease reading of such logic
expressions, it is allowed to omit a label whenever there is only one label in the context.

Example 2.45 The following annotations declare a function which returns the number of
occurrences of a given double in a memory block storing doubles between the given indexes,
together with the related axioms. It should be noted that without labels, this axiomatization
would be inconsistent, since the function would not depend on the values stored in t, hence the
two last axioms would say both that a==b+1 and a==b for some a and b.

1 /*@ ax i oma t i c NbOcc {

2 @ // nb_occ(t,i,j,e) gives the number of occurrences of e in t[i..j]

3 @ // (in a given memory state labelled L)

4 @ l o g i c i n t e g e r nb_occ{L}( doub l e *t, i n t e g e r i, i n t e g e r j,

5 @ doub l e e);

6 @ axiom nb_occ_empty{L}:

7 @ \ f o r a l l doub l e *t, e, i n t e g e r i, j;

8 @ i > j ==> nb_occ(t,i,j,e) == 0;

9 @ axiom nb_occ_true{L}:

10 @ \ f o r a l l doub l e *t, e, i n t e g e r i, j;

11 @ i <= j && t[j] == e ==>

12 @ nb_occ(t,i,j,e) == nb_occ(t,i,j-1,e) + 1;

13 @ axiom nb_occ_false{L}:

14 @ \ f o r a l l doub l e *t, e, i n t e g e r i, j;

15 @ i <= j && t[j] != e ==>

16 @ nb_occ(t,i,j,e) == nb_occ(t,i,j-1,e);

17 @ }

18 @*/

Example 2.46 This second example de�nes a predicate which indicates whether two memory
blocks of the same size are a permutation of each other. It illustrates the use of more than a
single label. Thus, the \at operator is mandatory here. Indeed the two blocks may come from
two distinct memory states. Typically, one of the post condition of a sorting function would
be permut{Pre,Post}(t,t).

1 /*@ ax i oma t i c Permut {

2 @ // permut{L1,L2}(t1,t2,n) is true whenever t1[0..n-1] in state L1

3 @ // is a permutation of t2[0..n-1] in state L2

4 @ p r e d i c a t e permut{L1 ,L2}( doub l e *t1 , doub l e *t2 , i n t e g e r n);

5 @ axiom permut_refl{L}:

6 @ \ f o r a l l doub l e *t, i n t e g e r n; permut{L,L}(t,t,n);

7 @ axiom permut_sym{L1,L2} :

8 @ \ f o r a l l doub l e *t1 , *t2 , i n t e g e r n;

9 @ permut{L1 ,L2}(t1,t2,n) ==> permut{L2,L1}(t2,t1 ,n) ;

10 @ axiom permut_trans{L1 ,L2,L3} :

11 @ \ f o r a l l doub l e *t1 , *t2 , *t3 , i n t e g e r n;

12 @ permut{L1 ,L2}(t1,t2,n) && permut{L2 ,L3}(t2,t3,n)

13 @ ==> permut{L1,L3}(t1 ,t3,n) ;

14 @ axiom permut_exchange{L1,L2} :

15 @ \ f o r a l l doub l e *t1 , *t2 , i n t e g e r i, j, n;

16 @ \at (t1[i],L1) == \at (t2[j],L2) &&

17 @ \at (t1[j],L1) == \at (t2[i],L2) &&

18 @ ( \ f o r a l l i n t e g e r k; 0 <= k < n && k != i && k != j ==>

19 @ \at (t1[k],L1) == \at (t2[k],L2))
20 @ ==> permut{L1,L2}(t1,t2,n);

21 @ }

22 @*/

2.6.10 Memory footprint speci�cation: reads clause

Experimental
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logic-function-decl ::= logic type-expr poly-id

parameters reads-clause ;

logic-predicate-decl ::= predicate poly-id

parameters? reads-clause ;

reads-clause ::= reads locations

logic-function-def ::= logic type-expr poly-id

parameters reads-clause = term ;

logic-predicate-def ::= predicate poly-id

parameters? reads-clause = pred ;

Figure 2.18: Grammar for logic declarations with reads clauses

Logic declaration can be augmented with a reads clause, with the syntax given in Figure 2.18,
which extends the one of Figure 2.12. This feature allows to specify the footprint of an hybrid
predicate or function, that is the set of memory locations which it depends on. From such
an information, one might deduce properties of the form f{L1}(args) = f{L2}(args) if it is
known that between states L1 and L2, the memory changes are disjoint from the declared
footprint.

Example 2.47 The following is the same as example 2.45 augmented with a reads clause.

1 /*@ ax i oma t i c Nb_occ {

2 @ l o g i c i n t e g e r nb_occ{L}( doub l e *t, i n t e g e r i, i n t e g e r j,

3 @ doub l e e)

4 @ r e ad s t[i..j];

5 @

6 @ axiom nb_occ_empty{L}: // ...

7 @

8 @ // ...

9 @ }

10 @*/

If for example a piece of code between labels L_1 and L_2 modi�es t[k] for some index k outside
i..j, then one can deduce that nb_occ{L_1}(t,i,j,e)==nb_occ{L_2}(t,i,j,e).

2.6.11 Speci�cation Modules

Speci�cation modules can be provided to encapsulate several logic de�nitions, for example
1

2 /*@ module List {

3 @

4 @ t ype list <A> = Nil | Cons(A , list <A>);

5 @

6 @ l o g i c i n t e g e r length <A>(list <A> l) =

7 @ \match l {

8 @ ca se Nil : 0

9 @ ca se Cons(h,t) : 1+ length(t) } ;

10 @

11 @ l o g i c A fold_right <A,B>((A -> B -> B) f, list <A> l, B acc) =

12 @ \match l {

13 @ ca se Nil : acc

14 @ ca se Cons(h,t) : f(h,fold_right(f,t,acc)) } ;

15 @

16 @ l o g i c list <A> filter <A>((A -> boo l ean ) f, list <A> l) =

17 @ fold_right (( \lambda A x, list <A> acc;

18 @ f(x) ? Cons(x,acc) : acc), Nil) ;
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term ::= \null

| \base_addr one-label? ( term )

| \block_length one-label? ( term )

| \o�set one-label? ( term )

| \allocation one-label? ( term )

pred ::= \allocable one-label? ( term )

| \freeable one-label? ( term )

| \fresh two-labels? ( term, term )

| \valid one-label? ( location-address )

| \valid_read one-label? ( location-address )

| \separated ( location-address , location-addresses )

one-label ::= { id }

two-labels ::= { id, id }

location-addresses ::= location-address (, location-address)∗

location-address ::= tset

Figure 2.19: Grammar extension of terms and predicates about memory

19 @

20 @ }

21 @*/

Module components are then accessible using a quali�ed notation like List::length.

Prede�ned algebraic speci�cations can be provided as libraries (see section 3), and imported
using a construct like

1 //@ open List;

where the �le list.acsl contains logic de�nitions, like the List module above.

2.7 Pointers and physical adressing

Grammar for terms and predicates is extended with new constructs given in Figure 2.19.
Location-address denotes the address of a memory location. It is a set of terms of some
pointer type as de�ned in Section 2.3.4.

2.7.1 Memory blocks and pointer dereferencing

C memory is structured into allocated blocks that can come either from a declarator or a
call to one of the calloc, malloc or realloc functions. Blocks are characterized by their base
address, i.e. the address of the declared object (the �rst declared object in case of an array
declarator), or the pointer returned by the allocating function (when the allocation succeed)
and their length.

ACSL provides the following built-in functions to deal with allocated blocks. All of them
takes an optional label identi�er as argument. The default value of that label is de�ned in
Section 2.4.3.
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� \base_addr{L}(p) returns the base address of the allocated block containing, at the label
L, the pointer p

\base_addr{id} : void* → char*

� \block_length{L}(p) returns the length (in bytes) of the allocated block containing, at
the label L, its argument pointer.

\block_length{id} : void* → size_t

In addition, dereferencing a pointer may lead to run-time errors. A pointer p is said to be
valid if *p is guaranteed to produce a de�nite value according to the C standard [12]. The
following built-in predicates deal with this notion:

� \valid applies to a set of terms (see Section 2.3.4) of some pointer type. \valid {L}(s)

holds if and only if dereferencing any p ∈ s is safe at label L, both for reading from *p

and writing to it. In particular, \valid {L}(\empty) holds for any label L.
\valid {id} : set<α *> → boolean

� \valid_read applies to a set of terms of some pointer type and holds if and only if it is
safe to read from all the pointers in the set

\valid_read{id} : set<α *> → boolean

\valid {L}(s) implies \valid_read{L}(s) but the reverse is not true. In particular, it is allowed
to read from a string literal, but not to write in it (see [12], 6.4.5�6).

The status of \valid and \valid_read constructs depends on the type of their argument.
Namely, \valid {L}((int *) p) and \valid {L}((char *)p) are not equivalent. On the other
hand, if we ignore potential alignment constraints, the following equivalence is true for any
pointer p:

\ v a l i d {L}(p) <==> \ v a l i d {L}((( cha r *)p)+(0.. s i z e o f (*p)))

and

\va l i d_read {L}(p) <==> \va l i d_read {L}((( cha r *)p)+(0.. s i z e o f (*p)))

Some shortcuts are provided:

� \null is an extra notation for the null pointer (i.e. a shortcut for (void*)0). As in
C itself (see [12], 6.3.2.3�3), the constant 0 can have any pointer type. In addition,
\valid {L}(\null) is always false, for any logic label L. Of course, \valid_read{L}(\null)

is always false too.

� \o�set {L}(p) returns the o�set between p and its base address
\o�set {id} : void* → size_t

\o�set {L}(p) = (char*)p - \base_addr{L}(p)

Again, if there is no alignment constraints, the following property holds: for any set of
pointers s and label L, \valid_read{L}(s) if and only if for all p∈s:

\ o f f s e t {L}(p) >= 0 && \ o f f s e t {L}(p) + s i z e o f (*p) <= \b lock_length {L}(p)

2.7.2 Separation

ACSL provides a built-in function to deal with separation of locations:
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allocation-clause ::= allocates dyn-allocation-addresses ;

| frees dyn-allocation-addresses ;

loop-allocation ::= loop allocates dyn-allocation-addresses ;

| loop frees dyn-allocation-addresses ;

dyn-allocation-addresses ::= location-addresses

| \nothing

Figure 2.20: Grammar for dynamic allocations and deallocations

� \separated applies to sets of terms (see Section 2.3.4) of some pointer type.
\separated(s1,s2) holds for any set of pointers s1 and s2 if and only if for all p∈s1
and q∈s2:

forall i n t e g e r i,j; 0 <= i < s i z e o f (*p), 0 <= j < s i z e o f (*q)
==> ( cha r *)p + i != ( cha r *)q + j

In fact, \separated is an n-ary predicate.
\separated(s1,..,sn) means that for each i 6= j, \separated(si,sj).

2.7.3 Dynamic allocation and deallocation

Experimental

Allocation-clauses allow to specify which memory location is dynamically allocated or deal-
located. The grammar for those constructions is given on Figure 2.20.

allocates \nothing and frees \nothing are respectively equivalent to allocates \empty and
frees \empty; it is left for convenience like for assigns clauses.

Allocation clauses for function and statement contracts

Clauses allocates and frees are tied together. The simple contract
/*@ f r e e s P1,P2,...;

@ a l l o c a t e s Q1,Q2,...;

@*/

means that any memory address that does not belong to the union of sets of terms Pi and Qj

has the same allocation status (see below) in the post-state than in the pre-state. The only
one di�erence between allocates and frees is that sets Pi are evaluated in the pre-state, and
sets Qi are evaluated in the post-state.

The built-in type allocation_status can take the following values:
/*@

t ype allocation_status =

\ s t a t i c | \ r e g i s t e r | \automat i c | \dynamic | \un a l l o c a t e d ;
*/

Built-in function \allocation {L}(p) returns the allocation status of the block containing, at
the label L, the pointer p

\allocation {id} : void* → allocation_status

This function is such that for any pointer p and label L
\ a l l o c a t i o n {L}(p) == \ a l l o c a t i o n {L}( \base_addr(p))

and
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\ a l l o c a t i o n {L}(p)== \un a l l o c a t e d ==> ! \va l i d_read {L}(p)

allocates Q1,. . .,Qn is equivalent to the postcondition

\ f o r a l l cha r * p;

\ s epa r a t ed ( \un ion (Q1,. . .,Qn),p)==>
(\base_addr{Here}(p)== \base_addr{Pre}(p)
&& \b lock_length {Here}(p)== \b lock_length {Pre}(p)
&& \ v a l i d {Here}(p)<==> \ v a l i d {Pre}(p)
&& \va l i d_read {Here}(p)<==> \va l i d_read {Pre}(p)
&& \ a l l o c a t i o n {Here}(p)== \ a l l o c a t i o n {Pre}(p))

In fact, like the assigns clause does not specify which memory location is assigned, the
allocation-clauses do not specify which memory location is dynamically allocated or deal-
located. Pre-conditions and post-conditions should be added to complete speci�cations about
allocations and deallocations. The following shortcuts can be used for that:

� \allocable {L}(p) holds if and only if the pointer p refers, at the label L, to the base
address of an unallocated memory block.

\allocable {id} : void* → boolean

For any pointer p and label L

\ a l l o c a b l e {L}(p) <==> ( \ a l l o c a t i o n {L}(p)== \un a l l o c a t e d && p== \base_addr{L}(p)).

� \freeable {L}(p) holds if and only if the pointer p refers, at the label L, to an allocated
memory block that can be safely released using the C function free.

\freeable {id} : void* → boolean

For any pointer p and label L

\ f r e e a b l e {L}(p) <==> ( \ a l l o c a t i o n {L}(p)== \dynamic && p== \base_addr{L}(p)).

� \fresh {L0,L1}(p,n) , indicates that p refers to an allocated memory block at label L1,
but that it is not the case at label L0. The predicate ensures also that, at label L1, the
length (in bytes) of the block allocated dynamically equals to n.

\fresh {id,id} : void*, integer → boolean

For any pointer p and labels L0 and L1

\ f r e s h {L0,L1}(p,n) <==> ( \ a l l o c a b l e {L0}(p) &&

\ f r e e a b l e {L1}(p) &&

\b lock_length {L1}(p)==n &&

\ v a l i d {L1}(( cha r *)p+(0..n))

Example 2.48 malloc and free functions can be speci�ed as follows.

1 /*@ a s s i g n s \noth ing ;
2 @ a l l o c a t e s \ r e s u l t ;
3 @ e n s u r e s \ r e s u l t == \ n u l l || \ f r e s h {Old ,Here}( \ r e s u l t ,n);
4 @*/

5 vo i d *malloc(size_t n);

6

7 /*@ r e q u i r e s p!= \ n u l l ==> \ f r e e a b l e {Here}(p);
8 @ a s s i g n s \noth ing ;
9 @ f r e e s p;

10 @ e n s u r e s p!= \ n u l l ==> \ a l l o c a b l e {Here}(p);
11 @*/

12 vo i d free( vo i d *p);

Default labels for constructs dedicated to memory are such that logic label Here can be omitted.
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When a behavior contains only one of the two allocation clauses, the given clause speci�es
the whole set of memory addresses to consider. This means that the set value for the other
clause of that behavior defaults to \nothing. Now, when none of the two allocation clauses is
given, the meaning is di�erent for anonymous behaviors and named behaviors:

� a named behavior without allocation clause does not specify anything about allocations
and deallocations. The allocated and deallocated memory blocks are in fact speci�ed
by the anonymous behavior of the contract. There is no condition to verify for these
named behaviors about allocations and deallocations;

� for an anonymous behavior, no allocation clause means that there is no newly allocated
nor deallocated memory block. That is equivalent to give allocates \nothing.

These rules are such that contracts without any allocation clause should be considered as hav-
ing only one allocates \nothing; leading to a condition to verify for each anonymous behavior.

Example 2.49 More precise speci�cations can be given using named behaviors under the
assumption of assumes clauses.

1 //@ ghos t i n t heap_status;

2 /*@ ax i oma t i c dynamic_allocation {

3 @ p r e d i c a t e is_allocable(size_t n) // Can a block of n bytes be allocated?

4 @ r e ad s heap_status;

5 @ }

6 @*/

7

8 /*@ a l l o c a t e s \ r e s u l t ;
9 @ b eha v i o r allocation:

10 @ assumes is_allocable(n);

11 @ a s s i g n s heap_status;

12 @ e n s u r e s \ f r e s h ( \ r e s u l t ,n);
13 @ b eha v i o r no_allocation:

14 @ assumes !is_allocable(n);

15 @ a s s i g n s \noth ing ;
16 @ a l l o c a t e s \no th ing ;
17 @ e n s u r e s \ r e s u l t == \ n u l l ;
18 @ complete b e h a v i o r s ;
19 @ d i s j o i n t b e h a v i o r s ;
20 @*/

21 vo i d *malloc(size_t n);

22

23 /*@ f r e e s p;

24 @ b eha v i o r deallocation:

25 @ assumes p!= \ n u l l ;
26 @ r e q u i r e s \ f r e e a b l e (p);
27 @ a s s i g n s heap_status;

28 @ e n s u r e s \ a l l o c a b l e (p);
29 @ b eha v i o r no_deallocation:

30 @ assumes p== \ n u l l ;
31 @ a s s i g n s \noth ing ;
32 @ f r e e s \noth ing ;
33 @ complete b e h a v i o r s ;
34 @ d i s j o i n t b e h a v i o r s ;
35 @*/

36 vo i d free( vo i d *p);

The behaviors named allocation and deallocation do not need an allocation clause. For
example, the allocation constraint of the allocation behavior is given by the clause allocates

\result of the anonymous behavior of the malloc function contract. To set a stronger contraint
into the behavior named no_allocation, the clause allocates \nothing should be given.
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Allocation clauses for loop annotations

Loop annotations are complemented by similar clauses allowing to specify which memory lo-
cation is dynamically allocated or deallocated by a loop. The grammar for those constructions
is given on Figure 2.20.

The clauses loop allocates and loop frees are tied together. The simple loop annotation

/*@ l oop f r e e s P1,P2,...;

@ l oop a l l o c a t e s Q1,Q2,...; */

means that any memory address that does not belong to the union of sets of terms Pi and Qi

has the same allocation status in the current state than before entering the loop. The only
di�erence between these two clauses is that sets Pi are evaluated in the state before entering
the loop (label LoopEntry), and Qi are evaluated in the current loop state (label LoopCurrent).

Namely, as for loop assigns , loop annotations loop frees and loop allocates de�ne a loop
invariant.

More precisely, the following loop annotation:

//@ l oop a l l o c a t e s Q1,...,Qn; */

is equivalent to the loop invariant:

\ f o r a l l cha r * p;

\ s epa r a t ed ( \un ion (Q1,. . .,Qn),p) ==>

(\base_addr{Here}(p)== \base_addr{LoopEntry }(p)
&& \b lock_length {Here}(p)== \b lock_length {LoopEntry }(p)
&& \ v a l i d {Here}(p)<==> \ v a l i d {LoopEntry }(p)
&& \va l i d_read {Here}(p)<==> \va l i d_read {LoopEntry }(p)
&& \ a l l o c a t i o n {Here}(p)== \ a l l o c a t i o n {LoopEntry }(p))

Example 2.50

1 /*@ a s s e r t \ f o r a l l i n t e g e r j; 0<=j<n ==> \ f r e e a b l e (q[j]); */

2 /*@ l oop a s s i g n s q[0..(i -1)];

3 @ l oop f r e e s q[0.. \at (i-1, LoopCurrent )];
4 @ l oop i n v a r i a n t \ f o r a l l i n t e g e r j ;

5 0 <= j < i ==> \ a l l o c a b l e ( \at (q[j],LoopEntry ));
6 @ l oop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0 <= i <= n;

7 @*/

8 f o r (i=0; i<n; i++) {

9 free(q[i]);

10 q[i]=NULL;

11 }

12

The addresses of locations q[0..n] are not modi�ed by the loop, but their values are. The
clause loop frees catches the set of the memory blocks that may have been released by the
previous loop iterations. The �rst loop invariant de�nes exactly these memory blocks. On
the other hand, loop frees indicates that the remaining blocks have not been freed since the
beginning of the loop. Hence, they are still \freeable as expressed by the initial assert , and
free(q[i]) will succeed at next step.

A loop-clause without allocation clause implicitly contents loop allocates \nothing. That means
the allocation status is not modi�ed by the loop body. A loop-behavior without allocation
clause means that the allocated and deallocated memory blocks are in fact speci�ed by the
allocation clauses of the loop-clauses (Grammar of loop-clauses and loop-behaviors is given
in Figure 2.9).
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2.8 Sets as �rst-class values

Sets of terms, as de�ned in Section 2.3.4, can be used as �rst-class values in annotations. All
the elements of such a set must share the same type (modulo the usual implicit conversions).
Sets have the built-in type set<A> where A is the type of terms contained in the set.

In addition, it is possible to consider sets of pointers to values of di�erent types. In
this case, the set is of type set<char*> and each of its elements e is converted to
(char*)e + (0..sizeof(*e)-1).

Example 2.51 The following example de�nes the footprint of a structure, that is the set of
locations that can be accessed from an object of this type.

1 s t r u c t S {

2 cha r *x;

3 i n t *y;

4 };

5

6 //@ l o g i c set < cha r *> footprint( s t r u c t S s) = \un ion (s.x,s.y) ;

7

8 /*@ l o g i c set < cha r *> footprint2( s t r u c t S s) =

9 @ \un ion (s.x,( cha r *)s.y+(0.. s i z e o f (s.y)-1)) ;

10 @*/

11

12 /*@ ax i oma t i c Conv {

13 axiom conversion: \ f o r a l l s t r u c t S s;

14 footprint(s) == \un ion (s.x,( cha r *) s.y + (0 .. s i z e o f ( i n t ) - 1));

15 }

16 */

In the �rst de�nition, since union is made with a set<char*> and a set<int*>, the result is
a set<char*> (accordingly to typing of union). In other words, the two de�nitions above are
equivalent.

This logic function can be used as argument of \separated or assigns clause.

Thus, the \separated predicate satis�es the following property (with s1 of type set<τ1*> and
s2 of type set<τ2*>)

1 \ s epa r a t ed (s1,s2) <==>

2 ( \ f o r a l l τ1* p; \ f o r a l l τ2* q;

3 \ sub s e t (p,s1) && \ sub s e t (q,s2) ==>

4 ( \ f o r a l l \ i n t e g e r i,j;

5 0 <= i < \ s i z e o f (τ1) && 0 <= j < \ s i z e o f (τ2) ==>

6 ( cha r *)p + i != ( cha r *)q + j))

and a clause assigns L1,. . .,Ln is equivalent to the postcondition

\ f o r a l l cha r * p; \ s epa r a t ed ( \un ion (&L1,. . .,&Ln),p) ==> *p == \o ld (*p)

2.9 Abrupt termination

Experimental

The ensures clause of function and statement contracts does not constrain the post-state when
the annotated function and statement terminates respectively abruptly. In such cases, abrupt
clauses can be used inside simple clause or behavior body. The allowed constructs are shown
in Figure 2.21.
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abrupt-clauses-fn ::= exits-clause

exits-clause ::= exits predicate ;

abrupt-clauses-stmt ::= exits-clause

| breaks-clause | continues-clause | returns-clause

breaks-clause ::= breaks predicate ;

continues-clause ::= continues predicate ;

returns-clause ::= returns predicate ;

term ::= \exit_status

Figure 2.21: Grammar of contracts about abrupt terminations

The clauses breaks , continues and returns can only be found in a statement contract and
state properties on the program state which hold when the annotated statement terminates
abruptly with the corresponding statement (break, continue or return ).

Inside these clauses, the construct \old(e) is allowed and denotes, like for statement contracts
ensures , assigns and allocates , the value of e in the pre-state of the statement. More generally,
the visibility in abrupt clauses of prede�ned logics labels (presented in Section 2.4.3) is the
same as in ensures clauses.

For the returns case, the \result construct is allowed (if the function is not returning void)
and is bound to the returned value.

Example 2.52 The following example illustrates each abrupt clause of a statement contracts.

1 i n t f( i n t x) {

2

3 wh i l e (x > 0) {

4

5 /*@ b r eak s x % 11 == 0 && x == \o ld (x);
6 @ c on t i n u e s (x+1) % 11 != 0 && x % 7 == 0 && x == \o ld (x)-1;
7 @ r e t u r n s ( \ r e s u l t +2) % 11 != 0 && ( \ r e s u l t +1) % 7 != 0

8 @ && \ r e s u l t % 5 == 0 && \ r e s u l t == \o ld (x)-2;
9 @ e n s u r e s (x+3) % 11 != 0 && (x+2) % 7 != 0 && (x+1) % 5 != 0

10 @ && x == \o ld (x)-3;
11 @*/

12 {

13 i f (x % 11 == 0) break ;
14 x--;

15 i f (x % 7 == 0) con t i nu e ;
16 x--;

17 i f (x % 5 == 0) r e t u r n x;

18 x--;

19 }

20 }

21 r e t u r n x;

22 }

The exits clause can be used in both function and statement contracts to give behavioral
properties to the main function or to any function that may exit the program, e.g. by calling
the exit function.

In such clauses, \old(e) is allowed and denotes the value of e in the pre-state of the function
or statement, and \exit_status is bound to the return code, e.g the value returned by main or
the argument passed to exit. The construct \exit_status can be used only in exits, assigns

and allocates clauses. On the contrary, \result cannot be used in exits clauses.
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assigns-clause ::= assigns locations (\from locations )? ;

| assigns term \from locations = term ;

Figure 2.22: Grammar for dependencies information

Example 2.53 Here is a complete speci�cation of the exit function which performs an un-
conditional exit of the main function:

1 /*@ a s s i g n s \noth ing ;
2 @ e n s u r e s \ f a l s e ;
3 @ exits \ e x i t_ s t a t u s == status;

4 @*/

5 vo i d exit( i n t status );

6

7 i n t status;

8

9 /*@ a s s i g n s status;

10 @ exits !cond && \ e x i t_ s t a t u s == 1 && status == val;

11 @*/

12 vo i d may_exit( i n t cond , i n t val) {

13 i f (! cond) {

14 status = val;

15 exit (1);

16 }

17 }

Note that the speci�cation of the may_exit function is incomplete since it allows modi�cations
of the variable status when no exit is performed. Using behaviors, it is possible to distinguish
between the exit case and the normal case, as in the following speci�cation:

8 /*@ b eha v i o r no_exit :

9 @ assumes cond;

10 @ a s s i g n s \noth ing ;
11 @ exits \ f a l s e ;
12 @ b eha v i o r no_return :

13 @ assumes !cond;

14 @ a s s i g n s status;

15 @ exits \ e x i t_ s t a t u s == 1 && status == val;

16 @ e n s u r e s \ f a l s e ;
17 @*/

18 vo i d may_exit( i n t cond , i n t val) ;

Contrary to ensures clauses, assigns , allocates and frees clauses of function and statement
contracts constrain the post-state even when the annotated function and statement terminates
respectively abruptly. This is shown in example 2.53 for a function contract.

2.10 Dependencies information

Experimental

An extended syntax of assigns clauses, described in Figure 2.22 allows to specify data depen-
dencies and functional expressions.

Such a clause indicates that the assigned values can only depend upon the locations mentioned
in the \from part of the clause. Again, this is an over-approximation: all of the locations
involved in the computation of the modi�ed values must be present, but some of locations
might not be used in practice. If the \from clause is absent, all of the locations reachable at
the given point of the program are supposed to be used. Moreover, for a single location, it is
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possible to give the precise relation between its �nal value and the value of its dependencies.
This expression is evaluated in the pre-state of the corresponding contract.

Example 2.54 The following example is a variation over the array_sum function in exam-
ple 2.43, in which the values of the array are added to a global variable total.

1 doub l e total = 0.0;

2

3 /*@ r e q u i r e s n >= 0 && \ v a l i d (t+(0..n-1)) ;

4 @ a s s i g n s total

5 \from t[0..n-1] = total + \sum(0,n-1,\lambda i n t k; t[k]);

6 @*/

7 vo i d array_sum( doub l e t[], i n t n) {

8 i n t i;

9 f o r (i=0; i < n; i++) total += t[i];

10 r e t u r n ;
11 }

Example 2.55 The composite element modi�er operators can be useful for writing such func-
tional expressions.

1 s t r u c t buffer { i n t pos ; cha r buf [80]; } line;

2

3 /*@ r e q u i r e s 80 > line.pos >= 0 ;

4 @ a s s i g n s line

5 @ \from line =

6 { line \wi th .buf =

7 { line.buf \wi th [line.pos] = ( cha r )'\0' } };

8 @*/

9 vo i d add_eol () {

10 line.buf[line.pos] = '\0' ;

11 }

2.11 Data invariants

Data invariants are properties on data that are supposed to hold permanently during the
lifetime of these data. In ACSL, we distinguish between:

� global invariants and type invariants: the former only apply to speci�ed global variables,
whereas the latter are associated to a static type, and apply to any variables of the
corresponding type;

� strong invariants and weak invariants: strong invariants must be valid at any time
during program execution (more precisely at any sequence point as de�ned in the C
standard), whereas weak invariants must be valid at function boundaries (function en-
trance and exit) but can be violated in between.

The syntax for declaring data invariants is given in Figure 2.23. The strength modi�er defaults
to weak.

Example 2.56 In the following example, we declare

1. a weak global invariant a_is_positive which speci�es that global variable a should remain
positive (weakly, so this property might be violated temporarily between functions calls);

2. a strong type invariant for variables of type temperature;
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declaration ::= /*@ data-inv-decl */

data-inv-decl ::= data-invariant | type-invariant

data-invariant ::= inv-strength? global invariant

id : pred ;

type-invariant ::= inv-strength? type invariant

id ( C-type-expr id ) = pred ;

inv-strength ::= weak | strong

Figure 2.23: Grammar for declarations of data invariants

3. a weak type invariant for variables of type struct S.

1 i n t a;

2 //@ g l o b a l i n v a r i a n t a_is_positive: a >= 0 ;

3

4 t y p ed e f doub l e temperature;

5 /*@ s t r o ng type i n v a r i a n t temp_in_celsius(temperature t) =

6 @ t >= -273.15 ;

7 @*/

8

9 s t r u c t S {

10 i n t f;

11 };

12 //@ t ype i n v a r i a n t S_f_is_positive( s t r u c t S s) = s.f >= 0 ;

2.11.1 Semantics

The distinction between strong and weak invariants has to do with the sequence points where
the property is supposed to hold. The distinction between global and type invariants has to
do with the set of values on which they are supposed to hold.

� Weak global invariants are properties which apply to global data and hold at any func-
tion entrance and function exit.

� Strong global invariants are properties which apply to global data and hold at any step
during execution (starting after initialization of these data).

� A weak type invariant on type τ must hold at any function entrance and exit, and
applies to any global variable or formal parameter with static type τ . If the result of
the function is of type τ , the result must also satisfy its weak invariant at function exit.
However, it says nothing about �elds, array elements, memory locations, etc. of type τ .

� A strong type invariant on type τ must hold at any step during execution, and applies to
any global variable, local variable, or formal parameter with static type τ . If the result
of the function has type τ , the result must also satisfy its strong invariant at function
exit. Again, it says nothing about �elds, array elements, memory locations, etc. of type
τ .

Example 2.57 The following example illustrates the use of a data invariant on a local static
variable.
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1 vo i d out_char( cha r c) {

2 s t a t i c i n t col = 0;

3 //@ g l o b a l i n v a r i a n t I : 0 <= col <= 79;

4 col ++;

5 i f (col >= 80) col = 0;

6 }

Example 2.58 Here is a longer example, the famous Dijkstra's Dutch �ag algorithm.

1 t y p ed e f enum { BLUE , WHITE , RED } color;

2 /*@ t ype i n v a r i a n t isColor(color c) =

3 @ c == BLUE || c == WHITE || c == RED ;

4 @*/

5

6 /*@ p r e d i c a t e permut{L1 ,L2}(color *t1, color *t2, i n t e g e r n) =

7 @ \at ( \ v a l i d (t1+(0..n)),L1) && \at ( \ v a l i d (t2+(0..n)),L2) &&

8 @ \numof(0,n,\lambda i n t e g e r i; \at (t1[i],L1) == BLUE) ==

9 @ \numof(0,n,\lambda i n t e g e r i; \at (t2[i],L2) == BLUE)

10 @ &&

11 @ \numof(0,n,\lambda i n t e g e r i; \at (t1[i],L1) == WHITE) ==

12 @ \numof(0,n,\lambda i n t e g e r i; \at (t2[i],L2) == WHITE)

13 @ &&

14 @ \numof(0,n,\lambda i n t e g e r i; \at (t1[i],L1) == RED) ==

15 @ \numof(0,n,\lambda i n t e g e r i; \at (t2[i],L2) == RED);

16 @*/

17

18 /*@ r e q u i r e s \ v a l i d (t+i) && \ v a l i d (t+j);
19 @ a s s i g n s t[i],t[j];

20 @ e n s u r e s t[i] == \o ld (t[j]) && t[j] == \o ld (t[i]);
21 @*/

22 vo i d swap(color t[], i n t i, i n t j) {

23 i n t tmp = t[i];

24 t[i] = t[j];

25 t[j] = tmp;

26 }

27 t y p ed e f s t r u c t flag {

28 i n t n;

29 color *colors;

30 } flag;

31 /*@ t ype i n v a r i a n t is_colored(flag f) =

32 @ f.n >= 0 && \ v a l i d (f.colors +(0..f.n-1)) &&

33 @ \ f o r a l l i n t e g e r k; 0 <= k < f.n ==> isColor(f.colors[k]) ;

34 @*/

35

36 /*@ p r e d i c a t e isMonochrome{L}(color *t, i n t e g e r i, i n t e g e r j,

37 @ color c) =

38 @ \ f o r a l l i n t e g e r k; i <= k <= j ==> t[k] == c ;

39 @*/

40

41 /*@ a s s i g n s f.colors [0..f.n-1];

42 @ e n s u r e s
43 @ \ e x i s t s i n t e g e r b, i n t e g e r r;

44 @ isMonochrome(f.colors ,0,b-1,BLUE) &&

45 @ isMonochrome(f.colors ,b,r-1,WHITE) &&

46 @ isMonochrome(f.colors ,r,f.n-1,RED) &&

47 @ permut{Old ,Here}(f.colors ,f.colors ,f.n-1);

48 @*/

49 vo i d dutch_flag(flag f) {

50 color *t = f.colors;

51 i n t b = 0;

52 i n t i = 0;

53 i n t r = f.n;

54 /*@ l oop i n v a r i a n t
55 @ ( \ f o r a l l i n t e g e r k; 0 <= k < f.n ==> isColor(t[k])) &&

56 @ 0 <= b <= i <= r <= f.n &&

57 @ isMonochrome(t,0,b-1,BLUE) &&

58 @ isMonochrome(t,b,i-1,WHITE) &&

59 @ isMonochrome(t,r,f.n-1,RED) &&
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60 @ permut{Pre ,Here}(t,t,f.n-1);

61 @ l oop a s s i g n s b,i,r,t[0 .. f.n-1];

62 @ l oop v a r i a n t r - i;

63 @*/

64 wh i l e (i < r) {

65 sw i t ch (t[i]) {

66 ca se BLUE:

67 swap(t, b++, i++);

68 break ;
69 ca se WHITE:

70 i++;

71 break ;
72 ca se RED:

73 swap(t, --r, i);

74 break ;
75 }

76 }

77 }

2.11.2 Model variables and model �elds

A model variable is a variable introduced in the speci�cation with the keyword model. Its type
must be a logic type. Analogously, types may have model �elds. These are used to provide
abstract speci�cations to functions whose concrete implementation must remain private.

The precise syntax for declaring model variables and �elds is given in Figure 2.24. It is
presented as additions to the regular C grammar for declarations

Informal semantics of model variables is as follows.

� Model variables can only appear in speci�cations. They are not lvalues, thus they cannot
be assigned directly (unlike ghost variables, see below).

� Nevertheless, a function contract might state that a model variable is assigned.

� When a function contract mentions model variables:

� the precondition is implicitly existentially quanti�ed over those variables;

� the postconditions are universally quanti�ed over the old values of model variables,
and existentially quanti�ed over the new values.

Thus, in practice, the only way to prove that a function body satis�es a contract with model
variables is to provide an invariant relating model variables and concrete variables, as in the
example below.

Model �elds behave the same, but they are attached to any value whose static type is the one
of the model declaration. A model �eld can be attached to any C type, not only to struct.
When it is attached to a compound type, however, it must not have the same name as a C
�eld of the corresponding type. In addition, model �elds are �inherited� by a typedef in the

declaration ::= C-declaration

| /*@ model parameter ; */ model variable
| /*@ model C-type { parameter ;? } ; */ model �eld

Figure 2.24: Grammar for declarations of model variables and �elds
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sense that the newly de�ned type has also the model �elds of its parents (and can acquire
more, which will not be present for the parent). For instance, in the following code, t1 has
one model �eld m1, while t2 has two model �elds, m1 and m2.
1 t y p ed e f i n t t1;

2 t y p ed e f t1 t2;

3 /*@ model t1 { i n t m1 }; */

4 /*@ model t2 { i n t m2 }; */

Example 2.59 Here is an example of a speci�cation for a function which generates fresh
integers. The contract is given in term of a model variable which is intended to represent the
set of �forbidden� values, e.g. the values that have already been generated.

1 /* public interface */

2

3 //@ model set < i n t e g e r > forbidden = \empty;
4

5 /*@ a s s i g n s forbidden;

6 @ e n s u r e s ! \ sub s e t ( \ r e s u l t , \o ld (forbidden ))
7 @ && \ sub s e t ( \ r e s u l t ,forbidden) && \ sub s e t ( \o ld (forbidden),forbidden );
8 @*/

9 i n t gen ();

The contract is expressed abstractly, telling that

� the forbidden set of values is modi�ed;

� the value returned is not in the set of forbidden values, thus it is �fresh�;

� the new set of forbidden values contains both the value returned and the previous forbid-
den values.

An implementation of this function might be as follows, where a decision has been made to
generate values in increasing order, so that it is su�cient to record the last value generated.
This decision is made explicit by an invariant.

1 /* implementation */

2 i n t gen() {

3 s t a t i c i n t x = 0;

4 /*@ g l o b a l i n v a r i a n t I: \ f o r a l l i n t e g e r k;

5 @ Set::mem(k,forbidden) ==> x > k;

6 @*/

7 r e t u r n x++;

8 }

Remarks Although the syntax of model variables is close to JML model variables, they
di�er in the sense that the type of a model variable is a logic type, not a C type. Also, the
semantics above is closer to the one of B machines [1]. It has to be noticed that program
veri�cation with model variables does not have a well-established theoretical background [19,
17], so we deliberately do not provide a precise semantics in this document .

2.12 Ghost variables and statements

Ghost variables and statements are like C variables and statements, but visible only in the
speci�cations. They are introduced by the ghost keyword at the beginning of the annotation
(i.e. /*@ ghost ... */ or //@ ghost ... for a one-line ghost code, as mentioned in section 1.2).
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The grammar is given in Figure 2.25, in which only the �rst form of annotation is used. In this
�gure, the C-* non-terminals refer to the corresponding grammar rules of the ISO standard,
without any ACSL extension. Any non terminal of the form ghost-non-term for which no
de�nition is given in the �gure represents the corresponding C-non-term entry, in which any
entry is substituted by ghost-entry.

The variations with respect to the C grammar are the following:

� Comments must be introduced by // and extend until the end of the line (the ghost code
itself is placed inside a C comment. /* ... */ would thus lead to incorrect C code).

� It is however possible to write multi-line annotations for ghost code. These annotations
are enclosed between /@ and @/. As in normal annotations, @s at the beginning of a line
and at the end of the comment (before the �nal @/) are considered as blank.

� Logical types, such as integer or real are authorized in ghost code.

� A non-ghost function can take ghost parameters. If such a ghost clause is present in the
declarator, then the list of ghost parameters must be non-empty and �xed (no vararg
ghost). The call to the function must then provide the appropriate number of ghost
parameters.

� Any non-ghost if-statement which does not have a non-ghost else clause can be aug-
mented with a ghost one. Similarly, a non-ghost switch can have a ghost default : clause
if it does not have a non-ghost one (there are however semantical restrictions for valid
ghost labelled statements in a switch, see next paragraph for details).

Semantics of Ghost Code The question of semantics is essential for ghost code. In-
formally, the semantics requires that ghost statements do not change the regular program
execution This implies several conditions, including e.g:

� Ghost code cannot modify a non-ghost C variable.

� Ghost code cannot modify a non-ghost structure �eld.

� If p is a ghost pointer pointing to a non-ghost memory location, then it is forbidden to
assign *p.

� Body of a ghost function is ghost code, hence do not modify non-ghost variables or
�elds.

� If a non-ghost C function is called in ghost code, it must not modify non-ghost variables
or �elds.

� If a structure has ghost �elds, the sizeof of the structure is the same has the structure
without ghost �elds. Also, alignment of �elds remains unchanged.

� The control-�ow graph of a function must not be altered by ghost statements. In
particular, no ghost return can appear in the body of a non-ghost function. Similarly,
ghost goto, break, and continue continue cannot jump outside of the innermost non-ghost
enclosing block.
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ghost-type-speci�er ::= C-type-speci�er

| logic-type-name

declaration ::= C-declaration

| /*@ ghost

ghost-declaration */

direct-declarator ::= C-direct-declarator

| direct-declarator

( parameter-type-list? )

/*@ ghost

( parameter-list )

*/ ghost args

post�x-expression ::= C-post�x-expression

| post�x-expression

( argument-expression-list? )

/*@ ghost

( argument-expression-list )

*/ call with ghosts

statement ::= C-statement

| statements-ghost

statements-ghost ::= /*@ ghost

ghost-statement+ */

ghost-selection-statement ::= C-selection-statement

| if ( expression )

statement

/*@ ghost else

C-statement+

*/

struct-declaration ::= C-struct-declaration

| /*@ ghost

C-struct-declaration */ ghost �eld

Figure 2.25: Grammar for ghost statements

Semantics is speci�ed as follows. First, the execution of a program with ghost code involves
a ghost memory heap and a ghost stack, disjoint from the regular heap and stack. Ghost
variables lie in the ghost heap, so as the ghost �eld of structures. Thus, every memory side-
e�ect can be classi�ed as ghost or non-ghost. Then, the semantics is that memory side-e�ects
of ghost code must always be in the ghost heap or the ghost stack.

Notice that this semantics is not statically decidable. It is left to tools to provide approxi-
mations, correct in the sense that any code statically detected as ghost must be semantically
ghost.

Example 2.60 The following example shows some invalid assignments of ghost pointers:

1

2 vo i d f( i n t x, i n t *q) {
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3 //@ ghos t i n t *p = q;

4 //@ ghos t *p = 0;

5 // above assignment is wrong: it modifies *q which lies

6 // in regular memory heap

7

8 //@ ghos t p = &x;

9 //@ ghos t *p = 0;

10 // above assignment is wrong: it modifies x which lies

11 // in regular memory stack

12

13 }

Example 2.61 The following example shows some invalid ghost statements:

1 i n t f ( i n t x, i n t y) {

2 //@ ghos t i n t z = x + y;

3 sw i t ch (x) {

4 ca se 0: r e t u r n y;

5 //@ ghos t ca s e 1: z=y;

6 // above statement is correct.

7 //@ ghos t ca s e 2: { z++; break ; }

8 // invalid , would bypass the non -ghost default

9 d e f a u l t : y++;

10 }

11 r e t u r n y;

12 }

13

14 i n t g( i n t x) {

15 //@ ghos t i n t z = x;

16 i f (x > 0) { r e t u r n x; }

17 //@ ghos t e l s e { z++; r e t u r n x; }

18 // invalid , would bypass the non -ghost return

19 r e t u r n x+1;

20 }

Di�erences between model variables and ghost variables A ghost variable is an
additional speci�cation variable which is assigned in ghost code like any C variable. On the
other hand, a model variable cannot be assigned, but one can state it is modi�ed and can
express properties about the new value, in a non-deterministic way, using logic assertions and
invariants. In other words, speci�cations using ghost variable assignments are executable.

Example 2.62 The example 2.59 can also be speci�ed with a ghost variable instead of a model
variable:

1 //@ ghos t set < i n t e g e r > forbidden = \empty;
2

3 /*@ a s s i g n s forbidden;

4 @ e n s u r e s ! \ sub s e t ( \ r e s u l t , \o ld (forbidden ))
5 @ && \ sub s e t ( \ r e s u l t ,forbidden)
6 && \ sub s e t ( \o ld (forbidden),forbidden );
7 @*/

8 i n t gen() {

9 s t a t i c i n t x = 0;

10 /*@ g l o b a l i n v a r i a n t I: \ f o r a l l i n t e g e r k;

11 @ \ sub s e t (k,forbidden) ==> x > k;

12 @*/

13 x++;

14 //@ ghos t forbidden = \un ion (x,forbidden );
15 r e t u r n x;

16 }
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2.12.1 Volatile variables

Experimental

Volatile variables can not be used in logic terms, since reading such a variable may have a
side e�ect, in particular two successive reads may return di�erent values.

declaration ::= //@ volatile locations (reads id)? (writes id)?

Figure 2.26: Grammar for volatile constructs

Specifying properties of a volatile variable may be done via a speci�c construct to attach
two ghost functions to it. This construct, described by the grammar of Figure 2.26, has the
following shape:
1 v o l a t i l e τ x;

2 //@ v o l a t i l e x r e ad s f writes g;

where f and g are ghost functions with the following prototypes:
3 τ f( v o l a t i l e τ * p);

4 τ g( v o l a t i l e τ * p, τ v);

This must be understood as a special construct to instrument the C code, where each access
to the variable x is replaced by a call to f(&x), and each assignment to x of a value v is
replaced by g(&x,v). If a given volatile variable is only read or only written to, the unused
accessor function can be omitted from the volatile construct.

Example 2.63 The following code is instrumented in order to inject �xed values at each read
of variable x, and collect written values.

1 v o l a t i l e i n t x;

2

3 /*@ ghos t //@ r e q u i r e s p == &x;

4 @ i n t reads_x( v o l a t i l e i n t *p) {

5 @ s t a t i c i n t injector_x [] = { 1, 2, 3 };

6 @ s t a t i c i n t injector_count = 0;

7 @ i f (p == &x)

8 @ r e t u r n injector_x[injector_count ++];

9 @ e l s e
10 @ r e t u r n 0; // should not happen

11 @ }

12 @*/

13

14 //@ ghos t i n t collector_x [3];

15 //@ ghos t i n t collector_count = 0;

16

17 /*@ ghos t //@ r e q u i r e s p == &x;

18 @ i n t writes_x( v o l a t i l e i n t *p, i n t v) {

19 @ i f (p == &x)

20 @ r e t u r n collector_x[collector_count ++] = v;

21 @ e l s e
22 @ r e t u r n 0; // should not happen

23 @ }

24 @*/

25

26 //@ v o l a t i l e x r e ad s reads_x writes writes_x;

27

28 /*@ e n s u r e s collector_count == 3 && collector_x [2] == 2;

29 @ e n s u r e s \ r e s u l t == 6;

30 @*/

31 i n t main () {

32 i n t i, sum = 0;
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33 f o r (i=0 ; i < 3; i++) {

34 sum += x;

35 x = i;

36 }

37 r e t u r n sum;

38 }

2.13 Unde�ned values, dangling pointers

2.13.1 Initialization

\initialized {L}(p) is a predicate taking a set of some pointer to l-values as argument and
means that each l-value in this set is initialized at label L.

\initialized {id} : set<α*> → bool

Example 2.64 In the following, the assertion is true.

1 i n t f( i n t n) {

2 i n t x;

3

4 i f (n > 0) x = n ; e l s e x = -n;

5 //@ a s s e r t \ i n i t i a l i z e d {Here }(&x);

6 r e t u r n x;

7 }

Default labels are such that logic label {Here} can be omitted.

2.13.2 Unspeci�ed values

\speci�ed {L} is a predicate taking a set of some pointer to l-values as argument and means
that each l-value in this set has a speci�ed value at label L: its value is not a dangling pointer
(that is, the value is not the address of a local variable refered to outside of its scope).

\speci�ed {id} : set<α*> → bool

Example 2.65 In the following, the assertion is not true.

1

2 i n t * f() {

3 i n t a;

4 r e t u r n &a;

5 }

6

7 i n t * g() {

8 i n t * p = f();

9 //@ a s s e r t \ s p e c i f i e d {Here}(p);
10 r e t u r n p+1;

11 }
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Chapter 3

Libraries

Disclaimer: this chapter is un�nished, it is left here to give an idea of what it will look like in
the �nal document.

This chapter is devoted to libraries of speci�cation, built upon the ACSL speci�cation lan-
guage. Section 3.2 describes additional predicates introduced by the Jessie plugin of Frama-C,
to propose a slightly higher level of annotation.

3.1 Libraries of logic speci�cations

A standard library is provided, in the spirit of the List module of Section 2.6.11

3.1.1 Real numbers

A library of general purpose functions and predicate over real numbers, �oats and doubles.

Includes

� abs, exp, power, log, sin, cos, atan, etc. over reals

� isFinite predicate over �oats and doubles (means not NaN nor in�nity)

� rounding reals to �oats or doubles with speci�c rounding modes.

3.1.2 Finite lists

� pure functions nil, cons, append, fold, etc.

� Path, Reachable, isFiniteList, isCyclic, etc. on C linked-lists.

3.1.3 Sets and Maps

Finite sets, �nite maps, in ZB-style.
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3.2 Jessie library: logical addressing of memory blocks

The Jessie library is a collection of logic speci�cations whose semantics is well-de�ned only
on source codes free from architecture-dependent features. In particular it is currently in-
compatible with pointer casts or unions (although there is ongoing work to support some of
them [20]). As a consequence, a valid pointer of some type τ∗ necessarily points to a memory
block which contains values of type τ .

3.2.1 Abstract level of pointer validity

In the particular setting described above, it is possible to introduce the following logic func-
tions:
1 /*@

2 @ l o g i c i n t e g e r \of f set_min <a>{L}(a *p);

3 @ l o g i c i n t e g e r \offset_max <a>{L}(a *p);

4 @/

� \o�set_min{L}(p) is the minimum integer i such that (p+i) is a valid pointer at label
L.

� \o�set_max{L}(p) is the maximum integer i such that (p+i) is a valid pointer at label
L.

The following properties hold:
1 \o f f s e t_min {L}(p+i) == \o f f s e t_min {L}(p)-i
2 \of fset_max {L}(p+i) == \of fset_max {L}(p)-i

It also introduces some syntactic sugar:
1 /*@

2 p r e d i c a t e \va l id_range <a>{L}(a *p, i n t e g e r i, i n t e g e r j) =

3 \o f f s e t_min {L}(p) <= i && \of fset_max {L}(p) >= j;

4 */

and the ACSL built-in predicate \valid {L}(p+(a..b)) is now equivalent to
\valid_range{L}(p,a,b).

3.2.2 Strings

ExperimentalThe logic function
//@ l o g i c i n t e g e r \ s t r l e n ( cha r * p);

denotes the length of a 0-terminated C string. It is a total function, whose value is nonnegative
if and only if the pointer in argument is really a string.

Example 3.1 Here is a contract for the strcpy function:

1 /*@ // src and dest cannot overlap

2 @ r e q u i r e s \base_addr(src) != \base_addr(dest);
3 @ // src is a valid C string

4 @ r e q u i r e s \ s t r l e n (src) >= 0 ;

5 @ // dest is large enough to store a copy of src up to the 0

6 @ r e q u i r e s \ v a l i d (dest +(0.. \ s t r l e n (src )));
7 @ e n s u r e s
8 @ \ f o r a l l i n t e g e r k; 0 <= k <= \ s t r l e n (src) ==> dest[k] == src[k];

9 @*/

10 cha r * strcpy( cha r *dest , con s t cha r *src);
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3.3 Memory leaks

Experimental

Veri�cation of absence of memory leak is outside the scope of the speci�cation language. On
the other hand, various models could be set up, using for example ghost variables.
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Chapter 4

Conclusion

This document presents a Behavioral Interface Speci�cation Language for ANSI C source
code. It provides a common basis that could be shared among several tools. The speci�cation
language described here is intended to evolve in the future, and remain open to additional
constructions. One interesting possible extension regards �temporal� properties in a large
sense, such as liveness properties, which can sometimes be simulated by regular speci�cations
with ghost variables [11], or properties on evolution of data over the time, such as the history
constraints of JML, or in the Lustre assertion language.
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AppendixA

Appendices

A.1 Glossary

pure expressions In ACSL setting, a pure expression is a C expression which contains no
assignments, no incrementation operator ++ or --, no function call, and no access to a
volatile object. The set of pure expression is a subset of the set of C expressions without
side e�ect (C standard [13, 12], �5.1.2.3, alinea 2).

left-values A left-value (lvalue for short) is an expression which denotes some place in the
memory during program execution, either on the stack, on the heap, or in the static
data segment. It can be either a variable identi�er or an expression of the form *e, e[e],
e.id or e->id, where e is any expression and id a �eld name. See C standard, �6.3.2.1
for a more detailed description of lvalues.

A modi�able lvalue is an lvalue allowed in the left part of an assignment. In essence,
all lvalues are modi�able except variables declared as const or of some array type with
explicit length.

pre-state and post-state For a given function call, the pre-state denotes the program state
at the beginning of the call, including the current values for the function parameters.
The post-state denotes the program state at the return of the call.

function behavior A function behavior (behavior for short) is a set of properties relating
the pre-state and the post-state for a possibly restricted set of pre-states (behavior
assumptions).

function contract A function contract (contract for short) forms a speci�cation of a func-
tion, consisting of the combination of a precondition (a requirement on the pre-state for
any caller to that function), a collection of behaviors, and possibly a measure in case of
a recursive function.

A.2 Comparison with JML

Although we took our inspiration in the Java Modeling Language (aka JML [15]), ACSL is
notably di�erent from JML in two crucial aspects:

� ACSL is a BISL for C, a low-level structured language, while JML is a BISL for Java, an
object-oriented inheritance-based high-level language. Not only the language features
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are not the same but the programming styles and idioms are very di�erent, which
entails also di�erent ways of specifying behaviors. In particular, C has no inheritance
nor exceptions, and no language support for the simplest properties on memory (e.g,
the size of an allocated memory block).

� JML relies on runtime assertion checking (RAC) when typing, static analysis and au-
tomatic deductive veri�cation fail. The example of CCured [21, 7], that adds strong
typing to C by relying on RAC too, shows that it is not possible to do it in a modular
way. Indeed, it is necessary to modify the layout of C data structures for RAC, which
is not modular. The follow-up project Deputy [8] thus reduces the checking power of
annotations in order to preserve modularity. On the contrary, we choose not to restrain
the power of annotations (e.g., all �rst order logic formulas are allowed). To that end,
we rely on manual deductive veri�cation using an interactive theorem prover (e.g., Coq)
when every other technique failed.

In the remainder of this chapter, we describe these di�erences in further details.

A.2.1 Low-level language vs. inheritance-based one

No inherited speci�cations

JML has a core notion of inheritance of speci�cations, that duplicates in speci�cations the
inheritance feature of Java. Inheritance combined with visibility and modularity account for
a number of complex features in JML (e.g, spec_public modi�er, data groups, represents
clauses, etc), that are necessary to express the desired inheritance-related speci�cations while
respecting visibility and modularity. Since C has no inheritance, these intricacies are avoided
in ACSL.

Error handling without exceptions

The usual way of signaling errors in Java is through exceptions. Therefore, JML speci�cations
are tailored to express exceptional postconditions, depending on the exception raised. Since
C has no exceptions, ACSL does not use exceptional speci�cations. Instead, C programmers
are used to signal errors by returning special values, like mandated in various ways in the C
standard.

Example A.1 In �7.12.1 of the standard, it is said that functions in <math.h> signal errors
as follows: �On a domain error, [...] the integer expression errno acquires the value EDOM.�

Example A.2 In �7.19.5.1 of the standard, it is said that function fclose signals errors as
follows: �The fclose function returns [...] EOF if any errors were detected.�

Example A.3 In �7.19.6.1 of the standard, it is said that function fprintf signals errors as
follows: �The fprintf function returns [...] a negative value if an output or encoding error
occured.�

Example A.4 In �7.20.3 of the standard, it is said that memory management functions
signal errors as follows: �If the space cannot be allocated, a null pointer is returned.�
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As shown by these few examples, there is no unique way to signal errors in the C standard
library, not mentioning user-de�ned functions. But since errors are signaled by returning
special values, it is su�cient to write an appropriate postcondition:

/*@ e n s u r e s \ r e s u l t == error_value || normal_postcondition; */

C contracts are not Java ones

In Java, the precondition of the following function that nulli�es an array of characters is
always true. Even if there was a precondition on the length of array a, it could easily be
expressed using the Java expression a.length that gives the dynamic length of array a.

1 public s t a t i c vo i d Java_nullify( cha r [] a) {

2 i f (a == null) r e t u r n ;
3 f o r ( i n t i = 0; i < a.length; ++i) {

4 a[i] = 0;

5 }

6 }

On the contrary, the precondition of the same function in C, whose de�nition follows, is more
involved. First, remark that the C programmer has to add an extra argument for the size of
the array, or rather a lower bound on this array size.

1 vo i d C_nullify( cha r * a, uns i gned i n t n) {

2 i n t i;

3 i f (n == 0) r e t u r n ;
4 f o r (i = 0; i < n; ++i) {

5 a[i] = 0;

6 }

7 }

A correct precondition for this function is the following:

/*@ r e q u i r e s \ v a l i d (a + 0..(n -1)); */

where predicate \valid is the one de�ned in Section 2.7.1. (note that \valid (a + 0..(-1)) is
the same as \valid (\empty) and thus is true regardless of the validity of a itself). When n is
null, a does not need to be valid at all, and when n is strictly positive, a must point to an
array of size at least n. To make it more obvious, the C programmer adopted a defensive
programming style, which returns immediately when n is null. We can duplicate this in the
speci�cation:

/*@ r e q u i r e s n == 0 || \ v a l i d (a + 0..(n -1)); */

Usually, many memory requirements are only necessary for some paths through the function,
which correspond to some particular behaviors, selected according to some tests performed
along the corresponding paths. Since C has no memory primitives, these tests involve other
variables that the C programmer added to track additional information, like n in our example.

To make it easier, it is possible in ACSL to distinguish between the assumes part of a behavior,
that speci�es the tests that need to succeed for this behavior to apply, and the requires part
that speci�es the additional preconditions that must be true when a behavior applies. The
speci�cation for our example can then be translated into:

1 /*@ b eha v i o r n_is_null:

2 @ assumes n == 0;

3 @ b eha v i o r n_is_not_null:

4 @ assumes n > 0;

5 @ r e q u i r e s \ v a l i d (a + 0..(n -1));

6 @*/
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This is equivalent to the previous requirement, except here behaviors can be completed with
postconditions that belong to one behavior only. Contrary to JML, the set of behaviors
for a function do not necessarily cover all cases of use for this function, as mentioned in
Section 2.3.3. This allows for partial speci�cations, whereas JML behaviors cannot o�er
such �exibility. Here, Our two behaviors are clearly mutually exclusive, and, since n is an
unsigned int , our they cover all the possible cases. We could have speci�ed that as well, by
adding the following lines in the contract (see Section 2.3.3).
1 @ ...

2 @ d i s j o i n t b e h a v i o r s ;
3 @ complete b e h a v i o r s ;
4 @*/

ACSL contracts vs. JML ones

To fully understand the di�erence between speci�cations in ACSL and JML, we detail in below
the requirement on the pre-state and the guarantee on the post-state given by behaviors in
JML and ACSL.

A JML contract is either lightweight or heavyweight. For the purpose of our comparison, it is
su�cient to know that a lightweight contract has requires and ensures clauses all at the same
level, while an heavyweight contract has multiple behaviors, each consisting of requires and
ensures clauses. Although it is not possible in JML to mix both styles, we can de�ne here
what it would mean to have both, by conjoining the conditions on the pre- and the post-state.
Here is an hypothetical JML contract mixing lightweight and heavyweight styles:
1 /*@ r e q u i r e s P1;

2 @ r e q u i r e s P2;

3 @ e n s u r e s Q1;

4 @ e n s u r e s Q2;

5 @ b eha v i o r x1:
6 @ r e q u i r e s A1;

7 @ r e q u i r e s R1;

8 @ e n s u r e s E1;

9 @ b eha v i o r x2:
10 @ r e q u i r e s A2;

11 @ r e q u i r e s R2;

12 @ e n s u r e s E2;

13 @*/

It assumes from the pre-state the condition:
P1 && P2 && ((A1 && R1) || (A2 && R2))

and guarantees that the following condition holds in post-state:
Q1 && Q2 &&

( \o ld (A1 && R1) ==> E1) && ( \o ld (A2 && R2) ==> E2)

Here is now an ACSL speci�cation:
1 /*@ r e q u i r e s P1;

2 @ r e q u i r e s P2;

3 @ e n s u r e s Q1;

4 @ e n s u r e s Q2;

5 @ b eha v i o r x1:
6 @ assumes A1;

7 @ r e q u i r e s R1;

8 @ e n s u r e s E1;

9 @ b eha v i o r x2:
10 @ assumes A2;

11 @ r e q u i r e s R2;

12 @ e n s u r e s E2;

13 @*/
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Syntactically, the only di�erence with the JML speci�cation is the addition of the assumes

clauses. Its translation to assume-guarantee is however quite di�erent. It assumes from the
pre-state the condition:

P1 && P2 && (A1 ==> R1) && (A2 ==> R2)

and guarantees that the following condition holds in the post-state:

Q1 && Q2 && ( \o ld (A1) ==> E1) && ( \o ld (A2) ==> E2)

Thus, ACSL allows to distinguish between the clauses that control which behavior is active
(the assumes clauses) and the clauses that are preconditions for a particular behavior (the
internal requires clauses). In addition, as mentioned above, there is by default no requirement
in ACSL for the speci�cation to be complete (The last part of the JML condition on the pre-
state). If desired, this has to be precised explicitly with a complete behaviors clause as seen in
Section 2.3.3.

A.2.2 Deductive veri�cation vs. RAC

Sugar-free behaviors

As explained in details in [22], JML heavyweight behaviors can be viewed as syntactic sugar
(however complex it is) that can be translated automatically into more basic contracts con-
sisting mostly of pre- and postconditions and frame conditions. This allows complex nesting
of behaviors from the user point of view, while tools only have to deal with basic contracts. In
particular, the major tools on JML use this desugaring process, like the Common JML tools
to do assertion checking, unit testing, etc. (see [18]) and the tool ESC/Java2 for automatic
deductive veri�cation of JML speci�cations (see [6]).

One issue with such a desugaring approach is the complexity of the transformations involved,
as e.g. for desugaring assignable clauses between multiple spec-cases in JML [22]. Another
issue is precisely that tools only see one global contract, instead of multiple independent
behaviors, that could be analyzed separately in more detail. Instead, we favor the view that
a function implements multiple behaviors, that can be analyzed separately if a tool feels like
it. Therefore, we do not intend to provide a desugaring process.

Axiomatized functions in speci�cations

JML only allows pure Java methods to be called in speci�cations [16]. This is certainly
understandable when relying on RAC: methods called should be de�ned so that the runtime
can call them, and they should not have side-e�ects in order not to pollute the program they
are supposed to annotate.

In our setting, it is desirable to allow calls to logical functions in speci�cations. These functions
may be de�ned, like program ones, but they may also be only declared (with a suitable
declaration of reads clause) and de�ned through an axiomatization. This makes for richer
speci�cations that may be useful either in automatic or in manual deductive veri�cation.

A.2.3 Syntactic di�erences

The following table summarizes the di�erence between JML keywords and ACSL ones, when
the intent is the same, although minor di�erences might exist.
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JML ACSL
modi�able,assignable assigns
measured_by decreases
loop_invariant loop invariant
decreases loop variant
( \forall τ x ; P ; Q) ( \forall τ x ; P ==> Q)

( \exists τ x ; P ; Q) ( \exists τ x ; P && Q)

\max τ x ; a <= x <= b ; f) \max(a,b,\lambda τ x ; f)

A.3 Typing rules

Disclaimer: this section is un�nished, it is left here just to give an idea of what it will look
like in the �nal document.

A.3.1 Rules for terms

Integer promotion:
Γ ` e : τ

Γ ` e : integer

if τ is any C integer type char, short, int, or long, whatever attribute they have, in particular
signed or unsigned

Variables:

Γ ` id : τ
if id : τ ∈ Γ

Unary integer operations:

Γ ` t : integer
Γ ` op t : integer

if op ∈ {+,−,∼}

Boolean negation:
Γ ` t : boolean
Γ `! t : boolean

Pointer dereferencing:
Γ ` t : τ∗
Γ ` ∗t : τ

Address operator:
Γ ` t : τ

Γ ` &t : τ∗

Binary
Γ ` t1 : integer Γ ` t2 : integer

Γ ` t1 op t2 : integer
if op ∈ {+,−, ∗, /,%}

Γ ` t1 : real Γ ` t2 : real
Γ ` t1 op t2 : real

if op ∈ {+,−, ∗, /}

Γ ` t1 : integer Γ ` t2 : integer
Γ ` t1 op t2 : boolean

if op ∈ {==, ! =, <=, <,>=, >}

Γ ` t1 : real Γ ` t2 : real
Γ ` t1 op t2 : boolean

if op ∈ {==, ! =, <=, <,>=, >}
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Γ ` t1 : τ ∗ Γ ` t2 : τ∗
Γ ` t1 op t2 : boolean

if op ∈ {==, ! =, <=, <,>=, >}

(to be continued)

A.3.2 Typing rules for sets

We consider the typing judgement Γ,Λ ` s : τ, b meaning that s is a set of terms of type τ ,
which is moreover a set of locations if the boolean b is true. Γ is the C environment and Λ is
the logic environment.

Rules:

Γ,Λ ` id : τ, true
if id : τ ∈ Γ

Γ,Λ ` id : τ, true
if id : τ ∈ Λ

Γ,Λ ` s : τ∗, b
Γ,Λ ` ∗s : τ, true

id : τ s : set < struct S∗ >
` s− > id : set < τ >

Γ, b ∪ Λ ` e : tsetτ

Γ,Λ ` {e | b;P} : tsetτ

Γ,Λ ` e1 : τ, b Γ,Λ ` e2 : τ, b

Γ,Λ ` e1, e2 : τ, b

A.4 Speci�cation Templates

This section describes some common issues that may occur when writing an ACSL speci�ca-
tion and proposes some solution to overcome them

A.4.1 Accessing a C variable that is masked

The situation may happen where it is necessary to refer in an annotation to a C variable
that is masked at that point. For instance, a function contract may need to refer to a global
variable that has the same name as a function parameter, as in the following code:

1 i n t x;

2 //@ a s s i g n s x;

3 i n t g();

4

5 i n t f( i n t x) {

6 // ...

7 r e t u r n g();

8 }

In order to write the assigns clause for f, we must access the global variable x, since f calls
g, which can modify x. This is not possible with C scoping rules, as x refers to the parameter
of f in the scope of the function.

A solution is to use a ghost pointer to x, as shown in the following code:
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1 i n t x;

2

3 //@ ghos t i n t * con s t ghost_ptr_x = &x;

4

5 //@ a s s i g n s x;

6 i n t g();

7

8 //@ a s s i g n s *ghost_ptr_x;

9 i n t f( i n t x) {

10 // ...

11 r e t u r n g();

12 }

A.5 Illustrative example

This is an attempt to de�ne an example for ACSL, much as the Purse example in JML
description papers. It is a memory allocator, whose main functions are memory_alloc and
memory_free, to respectively allocate and deallocate memory. The goal is to exercise as much
as possible of ACSL.

1

2 #i n c l u d e <stdlib.h>

3

4 #de f i n e DEFAULT_BLOCK_SIZE 1000

5

6 t y p ed e f enum _bool { false = 0, true = 1 } bool;

7

8 /*@ p r e d i c a t e finite_list <A>((A* -> A*) next_elem , A* ptr) =

9 @ ptr == \ n u l l ||

10 @ ( \ v a l i d (ptr) && finite_list(next_elem ,next_elem(ptr))) ;

11 @

12 @ l o g i c i n t e g e r list_length <A>((A* -> A*) next_elem , A* ptr) =

13 @ (ptr == \ n u l l ) ? 0 :

14 @ 1 + list_length(next_elem ,next_elem(ptr)) ;

15 @

16 @

17 @ p r e d i c a t e lower_length <A>((A* -> A*) next_elem ,

18 @ A* ptr1 , A* ptr2) =

19 @ finite_list(next_elem , ptr1) && finite_list(next_elem , ptr2)

20 @ && list_length(next_elem , ptr1) < list_length(next_elem , ptr2) ;

21 @*/

22

23 // forward reference

24 s t r u c t _memory_slice;

25

26 /* A memory block holds a pointer to a raw block of memory allocated by

27 * calling [malloc ]. It is sliced into chunks , which are maintained by

28 * the [slice] structure. It maintains additional information such as

29 * the [size] of the memory block , the number of bytes [used] and the [next]

30 * index at which to put a chunk.

31 */

32 t y p ed e f s t r u c t _memory_block {

33 //@ ghos t boo l ean packed;

34 // ghost field [packed] is meant to be used as a guard that tells when

35 // the invariant of a structure of type [memory_block] holds

36 uns i gned i n t size;

37 // size of the array [data]

38 uns i gned i n t next;

39 // next index in [data] at which to put a chunk

40 uns i gned i n t used;

41 // how many bytes are used in [data], not necessarily contiguous ones

42 cha r * data ;
43 // raw memory block allocated by [malloc]

44 s t r u c t _memory_slice* slice;

45 // structure that describes the slicing of a block into chunks

46 } memory_block;
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47

48 /*@ s t r o ng type i n v a r i a n t inv_memory_block(memory_block mb) =

49 @ mb.packed ==>

50 @ (0 < mb.size && mb.used <= mb.next <= mb.size

51 @ && \ o f f s e t (mb. data ) == 0

52 @ && \b lock_length (mb. data ) == mb.size) ;

53 @

54 @ p r e d i c a t e valid_memory_block(memory_block* mb) =

55 @ \ v a l i d (mb) && mb->packed ;

56 @*/

57

58 /* A memory chunk holds a pointer [data] to some part of a memory block

59 * [block]. It maintains the [offset] at which it points in the block , as well

60 * as the [size] of the block it is allowed to access. A field [free] tells

61 * whether the chunk is used or not.

62 */

63 t y p ed e f s t r u c t _memory_chunk {

64 //@ ghos t boo l ean packed;

65 // ghost field [packed] is meant to be used as a guard that tells when

66 // the invariant of a structure of type [memory_chunk] holds

67 uns i gned i n t offset;

68 // offset at which [data] points into [block ->data]

69 uns i gned i n t size;

70 // size of the chunk

71 bool free;

72 // true if the chunk is not used , false otherwise

73 memory_block* block;

74 // block of memory into which the chunk points

75 cha r * data ;
76 // shortcut for [block ->data + offset]

77 } memory_chunk;

78

79 /*@ s t r o ng type i n v a r i a n t inv_memory_chunk(memory_chunk mc) =

80 @ mc.packed ==>

81 @ (0 < mc.size && valid_memory_block(mc.block)

82 @ && mc.offset + mc.size <= mc.block ->next) ;

83 @

84 @ p r e d i c a t e valid_memory_chunk(memory_chunk* mc, i n t s) =

85 @ \ v a l i d (mc) && mc->packed && mc->size == s ;

86 @

87 @ p r e d i c a t e used_memory_chunk(memory_chunk mc) =

88 @ mc.free == false ;

89 @

90 @ p r e d i c a t e freed_memory_chunk(memory_chunk mc) =

91 @ mc.free == true ;

92 @*/

93

94 /* A memory chunk list links memory chunks in the same memory block.

95 * Newly allocated chunks are put first , so that the offset of chunks

96 * decreases when following the [next] pointer. Allocated chunks should

97 * fill the memory block up to its own [next] index.

98 */

99 t y p ed e f s t r u c t _memory_chunk_list {

100 memory_chunk* chunk;

101 // current list element

102 s t r u c t _memory_chunk_list* next;

103 // tail of the list

104 } memory_chunk_list;

105

106 /*@ l o g i c memory_chunk_list* next_chunk(memory_chunk_list* ptr) =

107 @ ptr ->next ;

108 @

109 @ p r e d i c a t e valid_memory_chunk_list

110 @ (memory_chunk_list* mcl , memory_block* mb) =

111 @ \ v a l i d (mcl) && valid_memory_chunk(mcl ->chunk ,mcl ->chunk ->size)

112 @ && mcl ->chunk ->block == mb

113 @ && (mcl ->next == \ n u l l ||

114 @ valid_memory_chunk_list(mcl ->next , mb))

115 @ && mcl ->offset == mcl ->chunk ->offset

116 @ && (

117 @ // it is the last chunk in the list
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118 @ (mcl ->next == \ n u l l && mcl ->chunk ->offset == 0)

119 @ ||

120 @ // it is a chunk in the middle of the list

121 @ (mcl ->next != \ n u l l
122 @ && mcl ->next ->chunk ->offset + mcl ->next ->chunk ->size

123 @ == mcl ->chunk ->offset)

124 @ )

125 @ && finite_list(next_chunk , mcl) ;

126 @

127 @ p r e d i c a t e valid_complete_chunk_list

128 @ (memory_chunk_list* mcl , memory_block* mb) =

129 @ valid_memory_chunk_list(mcl ,mb)

130 @ && mcl ->next ->chunk ->offset +

131 @ mcl ->next ->chunk ->size == mb ->next ;

132 @

133 @ p r e d i c a t e chunk_lower_length(memory_chunk_list* ptr1 ,

134 @ memory_chunk_list* ptr2) =

135 @ lower_length(next_chunk , ptr1 , ptr2) ;

136 @*/

137

138 /* A memory slice holds together a memory block [block] and a list of chunks

139 * [chunks] on this memory block.

140 */

141 t y p ed e f s t r u c t _memory_slice {

142 //@ ghos t boo l ean packed;

143 // ghost field [packed] is meant to be used as a guard that tells when

144 // the invariant of a structure of type [memory_slice] holds

145 memory_block* block;

146 memory_chunk_list* chunks;

147 } memory_slice;

148

149 /*@ s t r o ng type i n v a r i a n t inv_memory_slice(memory_slice* ms) =

150 @ ms.packed ==>

151 @ (valid_memory_block(ms->block) && ms->block ->slice == ms

152 @ && (ms->chunks == \ n u l l
153 @ || valid_complete_chunk_list(ms->chunks , ms ->block ))) ;

154 @

155 @ p r e d i c a t e valid_memory_slice(memory_slice* ms) =

156 @ \ v a l i d (ms) && ms->packed ;

157 @*/

158

159 /* A memory slice list links memory slices , to form a memory pool.

160 */

161 t y p ed e f s t r u c t _memory_slice_list {

162 //@ ghos t boo l ean packed;

163 // ghost field [packed] is meant to be used as a guard that tells when

164 // the invariant of a structure of type [memory_slice_list] holds

165 memory_slice* slice;

166 // current list element

167 s t r u c t _memory_slice_list* next;

168 // tail of the list

169 } memory_slice_list;

170

171 /*@ l o g i c memory_slice_list* next_slice(memory_slice_list* ptr) =

172 @ ptr ->next ;

173 @

174 @ s t r o ng type i n v a r i a n t inv_memory_slice_list(memory_slice_list* msl) =

175 @ msl.packed ==>

176 @ (valid_memory_slice(msl ->slice)

177 @ && (msl ->next == \ n u l l ||

178 @ valid_memory_slice_list(msl ->next))

179 @ && finite_list(next_slice , msl)) ;

180 @

181 @ p r e d i c a t e valid_memory_slice_list(memory_slice_list* msl) =

182 @ \ v a l i d (msl) && msl ->packed ;

183 @

184 @ p r e d i c a t e slice_lower_length(memory_slice_list* ptr1 ,

185 @ memory_slice_list* ptr2) =

186 @ lower_length(next_slice , ptr1 , ptr2)

187 @ } */

188
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189 t y p ed e f memory_slice_list* memory_pool;

190

191 /*@ t ype i n v a r i a n t valid_memory_pool(memory_pool *mp) =

192 @ \ v a l i d (mp) && valid_memory_slice_list (*mp) ;

193 @*/

194

195 /*@ b eha v i o r zero_size:

196 @ assumes s == 0;

197 @ a s s i g n s \noth ing ;
198 @ e n s u r e s \ r e s u l t == 0;

199 @

200 @ b eha v i o r positive_size:

201 @ assumes s > 0;

202 @ r e q u i r e s valid_memory_pool(arena );

203 @ e n s u r e s \ r e s u l t == 0

204 @ || (valid_memory_chunk( \ r e s u l t ,s) &&

205 @ used_memory_chunk (* \ r e s u l t ));
206 @ */

207 memory_chunk* memory_alloc(memory_pool* arena , uns i gned i n t s) {

208 memory_slice_list *msl = *arena;

209 memory_chunk_list *mcl;

210 memory_slice *ms;

211 memory_block *mb;

212 memory_chunk *mc;

213 uns i gned i n t mb_size;

214 //@ ghos t uns i gned i n t mcl_offset;

215 cha r *mb_data;

216 // guard condition

217 i f (s == 0) r e t u r n 0;

218 // iterate through memory blocks (or slices)

219 /*@

220 @ l oop i n v a r i a n t valid_memory_slice_list(msl);

221 @ l oop v a r i a n t msl f o r slice_lower_length;

222 @ */

223 wh i l e (msl != 0) {

224 ms = msl ->slice;

225 mb = ms->block;

226 mcl = ms->chunks;

227 // does [mb] contain enough free space?

228 i f (s <= mb->size - mb->next) {

229 //@ ghos t ms-> ghos t = false; // unpack the slice

230 // allocate a new chunk

231 mc = (memory_chunk *) malloc( s i z e o f (memory_chunk ));
232 i f (mc == 0) r e t u r n 0;

233 mc->offset = mb->next;

234 mc->size = s;

235 mc->free = false;

236 mc->block = mb;

237 //@ ghos t mc-> ghos t = true; // pack the chunk

238 // update block accordingly

239 //@ ghos t mb-> ghos t = false; // unpack the block

240 mb->next += s;

241 mb->used += s;

242 //@ ghos t mb-> ghos t = true; // pack the block

243 // add the new chunk to the list

244 mcl = (memory_chunk_list *) malloc( s i z e o f (memory_chunk_list ));
245 i f (mcl == 0) r e t u r n 0;

246 mcl ->chunk = mc;

247 mcl ->next = ms->chunks;

248 ms->chunks = mcl;

249 //@ ghos t ms-> ghos t = true; // pack the slice

250 r e t u r n mc;

251 }

252 // iterate through memory chunks

253 /*@

254 @ l oop i n v a r i a n t valid_memory_chunk_list(mcl ,mb);

255 @ l oop v a r i a n t mcl f o r chunk_lower_length;

256 @ */

257 wh i l e (mcl != 0) {

258 mc = mcl ->chunk;

259 // is [mc] free and large enough?
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260 i f (mc ->free && s <= mc->size) {

261 mc->free = false;

262 mb->used += mc->size;

263 r e t u r n mc;

264 }

265 // try next chunk

266 mcl = mcl ->next;

267 }

268 msl = msl ->next;

269 }

270 // allocate a new block

271 mb_size = (DEFAULT_BLOCK_SIZE < s) ? s : DEFAULT_BLOCK_SIZE;

272 mb_data = ( cha r *) malloc(mb_size );
273 i f (mb_data == 0) r e t u r n 0;

274 mb = (memory_block *) malloc( s i z e o f (memory_block ));
275 i f (mb == 0) r e t u r n 0;

276 mb->size = mb_size;

277 mb->next = s;

278 mb->used = s;

279 mb-> data = mb_data;

280 //@ ghos t mb-> ghos t = true; // pack the block

281 // allocate a new chunk

282 mc = (memory_chunk *) malloc( s i z e o f (memory_chunk ));
283 i f (mc == 0) r e t u r n 0;

284 mc->offset = 0;

285 mc->size = s;

286 mc->free = false;

287 mc->block = mb;

288 //@ ghos t mc-> ghos t = true; // pack the chunk

289 // allocate a new chunk list

290 mcl = (memory_chunk_list *) malloc( s i z e o f (memory_chunk_list ));
291 i f (mcl == 0) r e t u r n 0;

292 //@ ghos t mcl ->offset = 0;

293 mcl ->chunk = mc;

294 mcl ->next = 0;

295 // allocate a new slice

296 ms = (memory_slice *) malloc( s i z e o f (memory_slice ));
297 i f (ms == 0) r e t u r n 0;

298 ms->block = mb;

299 ms->chunks = mcl;

300 //@ ghos t ms-> ghos t = true; // pack the slice

301 // update the block accordingly

302 mb->slice = ms;

303 // add the new slice to the list

304 msl = (memory_slice_list *) malloc( s i z e o f (memory_slice_list ));
305 i f (msl == 0) r e t u r n 0;

306 msl ->slice = ms;

307 msl ->next = *arena;

308 //@ ghos t msl -> ghos t = true; // pack the slice list

309 *arena = msl;

310 r e t u r n mc;

311 }

312

313 /*@ b eha v i o r null_chunk:

314 @ assumes chunk == \ n u l l ;
315 @ a s s i g n s \noth ing ;
316 @

317 @ b eha v i o r valid_chunk:

318 @ assumes chunk != \ n u l l ;
319 @ r e q u i r e s valid_memory_pool(arena );

320 @ r e q u i r e s valid_memory_chunk(chunk ,chunk ->size);

321 @ r e q u i r e s used_memory_chunk(chunk );

322 @ e n s u r e s
323 @ // if it is not the last chunk in the block , mark it as free

324 @ (valid_memory_chunk(chunk ,chunk ->size)

325 @ && freed_memory_chunk(chunk))

326 @ ||

327 @ // if it is the last chunk in the block , deallocate the block

328 @ ! \ v a l i d (chunk);
329 @ */

330 vo i d memory_free(memory_pool* arena , memory_chunk* chunk) {
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331 memory_slice_list *msl = *arena;

332 memory_block *mb = chunk ->block;

333 memory_slice *ms = mb->slice;

334 memory_chunk_list *mcl;

335 memory_chunk *mc;

336 // is it the last chunk in use in the block?

337 i f (mb ->used == chunk ->size) {

338 // remove the corresponding slice from the memory pool

339 // case it is the first slice

340 i f (msl ->slice == ms) {

341 *arena = msl ->next;

342 //@ ghos t msl -> ghos t = false; // unpack the slice list

343 free(msl);

344 }

345 // case it is not the first slice

346 wh i l e (msl != 0) {

347 i f (msl ->next != 0 && msl ->next ->slice == ms) {

348 memory_slice_list* msl_next = msl ->next;

349 msl ->next = msl ->next ->next;

350 // unpack the slice list

351 //@ ghos t msl_next -> ghos t = false;

352 free(msl_next );

353 break ;
354 }

355 msl = msl ->next;

356 }

357 //@ ghos t ms-> ghos t = false; // unpack the slice

358 // deallocate all chunks in the block

359 mcl = ms->chunks;

360 // iterate through memory chunks

361 /*@

362 @ l oop i n v a r i a n t valid_memory_chunk_list(mcl ,mb);

363 @ l oop v a r i a n t mcl f o r chunk_lower_length;

364 @ */

365 wh i l e (mcl != 0) {

366 memory_chunk_list *mcl_next = mcl ->next;

367 mc = mcl ->chunk;

368 //@ ghos t mc-> ghos t = false; // unpack the chunk

369 free(mc);

370 free(mcl);

371 mcl = mcl_next;

372 }

373 mb->next = 0;

374 mb->used = 0;

375 // deallocate the memory block and its data

376 //@ ghos t mb-> ghos t = false; // unpack the block

377 free(mb-> data );
378 free(mb);

379 // deallocate the corresponding slice

380 free(ms);

381 r e t u r n ;
382 }

383 // mark the chunk as freed

384 chunk ->free = true;

385 // update the block accordingly

386 mb->used -= chunk ->size;

387 r e t u r n ;
388 }

A.6 Changes

A.6.1 Version 1.7

� Added missing shift operators in �gure 2.1

� Modi�ed syntax for naming terms and predicates (�gures 2.2 and 2.1)
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� Added syntax rule for literal constants (�gure 2.1)

A.6.2 Version 1.6

� Modi�ed syntax for model �elds (section 2.11.2)

� Added missing logical xor operator (�gure 2.1).

� Addition of logical labels related to loops (section 2.4.3).

� Addition of labels to built-ins related to memory blocks (section 2.7.1)

� Introduction of \valid_read built-in and clari�cation of the notion of validity (sec-
tion 2.7.1).

� Introduction of built-in \allocable , \allocation , \freeable and \fresh (section 2.7.3).

� Introduction of allocates and frees clauses (section 2.7.3).

� Clarify the semantics of assigns clauses into statement contract.

� Improvements to the volatile clause (section 2.12.1).

� Clarify the evaluation of arrays inside an at (section 2.4.3).

A.6.3 Version 1.5

� Clarify the status of loop invariant in presence of break or side-e�ects in the loop test.

� Introduction of \with keyword for functional updates.

� Added bnf entry for completeness of function behaviors.

� Order of clauses in statement contracts is now �xed.

� requires clauses are allowed before behaviors of statement contracts.

� Added explicit singleton construct for sets.

� Introduction of logical arrays.

� Operations over pointers and arrays have been precised.

� Predicate \initialized (section 2.13.1) now takes a set of pointers as argument.

A.6.4 Version 1.4

� Added UTF-8 counterparts for built-in types ( integer , real , boolean).

� Fixed typos in the examples corresponding to features implemented in Frama-C.

� Order of clauses in function contracts is now �xed.

� Introduction of abrupt termination clauses.

� Introduction of axiomatic to gather predicates, logic functions, and their de�ning axioms.
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� Added speci�cation templates appendix for common speci�cation issues.

� Use of sets as �rst-class term has been precised.

� Fixed semantics of predicate \separated .

A.6.5 Version 1.3

� Functional update of structures.

� Terminates clause in function behaviors.

� Typos reported by David Mentré.

A.6.6 Version 1.2

This is the �rst public release of this document.
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