
A Lesson on Proof of Programs with Frama-C.
Invited Tutorial Paper

Nikolai Kosmatov, Virgile Prevosto, and Julien Signoles

CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

Abstract. To help formal verification tools to make their way into industry, they
ought to be more widely used in software engineering classes. This tutorial pa-
per serves this purpose and provides a lesson on formal specificationand proof
of programs with FRAMA -C, an open-source platform dedicated to analysis of C
programs, andACSL, a specification language for C.
Keywords: deductive verification, Frama-C, ACSL, program specification, teach-
ing.

1 Introduction

Recent advances on proof of programs based on deductive methods allow verification
tools to be successfully integrated into industrial verification processes [1, 2]. However,
their usage remains mostly confined to the verification of themost critical software.
One of the obstacles to their deeper penetration into industry is the lack of engineers
properly trained in formal methods. A wider use of formal verification methods and
tools in industrial verification requires their wider teaching and practical training for
software engineering students as well as professionals.

This tutorial paper presents a lesson on proof of programs inthe form of several
exercises followed by their solutions. It is based on our experience in teaching at sev-
eral French universities over the last four years. This experience shows that, for the
majority of students, theoretical courses (like lectures on Hoare logic [3] and weakest
precondition calculus [4]) are insufficient to learn proof of programs. We discuss the
difficulties of the lesson for a student, necessary background, most frequent mistakes,
and emphasize some points that often remain misunderstood.This lesson assumes that
students have learned the basics of formal specification such as precondition, postcon-
dition, invariant, variant, assertion.

In our lesson, we use FRAMA -C [5, 6], an open-source platform dedicated to the
analysis of C programs and developed at CEA LIST. Being open-source is an important
advantage for teaching: FRAMA -C is available on all major Linux distributions, and can
be easily installed by a local network administrator at any university. FRAMA -C gathers
several static analysis techniques in a single collaborative framework. In particular, two
different plug-ins are dedicated to proof of programs:JESSIE[7, 8] and WP [9]. The
latter is newer and aims to be better integrated into the restof the platform. Up to now,
we have usedJESSIEin our lessons because it is more stable and its level of integration
into the platform is not an issue for teaching.



All static analyzers of FRAMA -C, includingJESSIE, share a common specification
language, calledACSL [10]. This language allows FRAMA -C analyzers to collaborate
in an effective way [11]. Before proving programs, the students must learn to formally
specify them, so we includeACSL in our lesson which thereby mixes program spec-
ification and program verification.ACSL syntax was designed to stay close to C, and
students do not have any problem to learn it on-the-fly with a language manual at hand.
Thus we do not include a detailed presentation ofACSL in this paper.

The paper is organized as follows. The lesson is presented inthree parts: discovery
of the JESSIEtool (Section 2), specification of C programs inACSL (Section 3) and
their verification withJESSIE(Section 4). Section 5 presents our teaching experience
feedback. Section 6 provides some related work and concludes.

2 Introductory exercices

2.1 Safety checks for arithmetic overflows

Question 1.RunJESSIEto prove the following program:

/*@ ensures x >= 0 && \result == x || x < 0 && \result == -x;
assigns \nothing; */

int abs(int x) { return ( x >= 0 ) ? x : -x; }

Can you explain the unproved safety property? Write a precondition restricting the val-
ues ofx, for example, to the interval−1000 . . . 1000 and re-run the proof.

Answer.The postcondition for the given program is proved, butJESSIEreports an un-
proved safety check for an arithmetic overflow risk in-x. SinceINT_MIN = - INT_MAX - 1,
the expression-x provokes an overflow forx = INT_MIN. Restricting the values ofx to
−1000 . . . 1000 in the precondition avoids this risk, and the proof succeedsfor the com-
plete specified program:

/*@ requires -1000 <= x <= 1000;
ensures x >= 0 && \result == x || x < 0 && \result == -x;
assigns \nothing; */

int abs(int x) { return ( x >= 0 ) ? x : -x; }

Discussion.Arithmetic overflows are responsible for well-known critical software crashes,
but most students ignore these issues.JESSIEhelps them to understand this point. Notice
that the weakest possible precondition avoiding overflows in abs would bex > INT_MIN.
Finally, the contract has anassigns clause that specifies thatabs is not supposed to mod-
ify the global state of the program. We will go back on this clause in the next section.

2.2 Safety checks for pointer validity

Question 2.Consider the following function swapping the values referred by its inputs:

int swap(int *p1, int *p2) { int tmp = *p1; *p1 = *p2; *p2 = tmp; }

a) Specify the postcondition and runJESSIEto prove the program. Explain the results
you observe. Add a precondition and re-run the proof.



b) Explain the role of theassigns clause you put in the postcondition. (Did you?) Give
an example of a wrong implementation that would be proved byJESSIEwithout it.

Answer.a) We first add the following postcondition:
/*@ ensures \old(*p1) == *p2 && \old(*p2) == *p1;

assigns *p1, *p2; */

Here\old(*p1) refers to the value of*p1 before the call.JESSIEproves the postcondition,
but indicates a safety alarm at each dereference of the pointersp1 andp2. Indeed, the
validity of these pointers is supposed to be guaranteed by the caller, so it should be
explicitly specified by the precondition as follows:
/*@ requires \valid(p1) && \valid(p2);

ensures \old(*p1) == *p2 && \old(*p2) == *p1;
assigns *p1, *p2; */

int swap(int *p1, int *p2) { int tmp = *p1; *p1 = *p2; *p2 = tmp; }

After runningJESSIEagain, we see that the safety properties are now proved as well.

b) The assigns clause specifies here which variables can be modified by the function.
Without this clause, the following erroneous implementation can be proved:
int shared; // a global variable that should not be modified in swap
int swap(int *p1, int *p2) { shared = *p1; *p1 = *p2; *p2 = shared; }

Discussion.The students often forget to specify validity of memory accesses. This exer-
cise insists on this point and shows safety checks for pointer validity in JESSIE. Another
common error is a missing or incorrectassigns clause. Considering counter-examples
is an excellent way to make students aware of the problem.

3 Lesson on program specification

The goal of this lesson is to formally specify a well-known but non-trivial function that
searches an element in a sorted array. This can be split in several steps of increasing
difficulty to introduce the most usefulACSL constructs.

3.1 Function contracts

Question 3.Write theACSL formal specification corresponding to the following infor-
mal specification of functionfind_array. Explain its clauses.
/* [find_array(arr, len, query)] returns any index [idx] of the sorted array

[arr] of length [len] such that arr[idx] == query. If such an index does not
exist, it returns -1. */

int find_array(int* arr, int len, int query);

Answer.Here is a correct answer which providesrequires, ensures andassigns clauses.
/*@ requires len >= 0;

requires \valid(arr+(0..(len-1)));
requires \forall integer i, j; 0 <= i <= j < len ==> arr[i] <= arr[j];
ensures (\exists integer i; 0 <= i < len && arr[i] == query) ==>

0 <= \result < len && arr[\result] == query;
ensures (\forall integer i; 0 <= i < len ==> arr[i] != query) ==>

\result == -1;
assigns \nothing; */

int find_array(int* arr, int len, int query);



The three preconditions respectively say that:

– the given array length must be positive or zero,
– the array must contain at leastlen valid memory cells which can be safely read,
– the array must be sorted.

The twoensures clauses respectively state that:

– if the array containsquery at some index between0 andlen-1, then the value\result
returned by the function is between these bounds, andarr[\result] == query,

– if all the elements of the array are different ofquery, the returned value is-1.

The assigns clause specifies here that no memory location may be modified by the
function since it must have no observable effect on the memory from the outside.

Discussion.Maybe surprisingly, the main mistake is not related to big clauses like com-
plex quantifications and implications. Students actually tend to forget implicit specifi-
cations on the length of the array and the validity of its cells (usually they do not forget
theassigns clause after previous exercises). At this point, it is important to emphasize
this specific weakness of informal specifications which often contain implicit, unwrit-
ten parts. Additionally, we can show that writing severalrequires andensures clauses
may be clearer than writing a single clause of each type with abig conjunction.

3.2 Behaviors

Question 4.Modify the previousACSL specification in order to use two distinct behav-
iors corresponding to whether the elementquery is found or not. Explain your changes.

Answer.Here is a correct answer which defines two behaviorsexists andnot_exists.
/*@ requires \forall integer i, j; 0 <= i <= j < len ==> arr[i] <= arr[j];

requires len >= 0;
requires \valid(arr+(0..(len-1)));

assigns \nothing;

behavior exists:
assumes \exists integer i; 0 <= i < len && arr[i] == query;
ensures 0 <= \result < len;
ensures arr[\result] == query;

behavior not_exists:
assumes \forall integer i; 0 <= i < len ==> arr[i] != query;
ensures \result == -1; */

int find_array(int* arr, int len, int query);

Theassumes clauses are the activation conditions of the behaviors: if in some behavior
this clause is valid, theensures clause of this behavior must be satisfied.

Discussion.The usual students’ question is the difference between anassumes clause
(which is an assumption) and arequires clause (which is also allowed in a behavior and
contains a requirement which must be satisfied by the caller,so it needs a proof). It is
also important to explain that behaviors correspond to specifying by cases and to show
that this new specification is much clearer than the previousone which is equivalent
and uses implications instead.



3.3 Logical predicates

Question 5.Modify the previous specification to define and use two logical predicates:

– sorted which states that a given array is sorted,
– mem which states that an element belongs to a given array.

Answer.Here is a correct answer.

/*@ predicate sorted(int* arr, integer length) =
\forall integer i, j; 0 <= i <= j < length ==> arr[i] <= arr[j];

predicate mem(int elt, int* arr, integer length) =
\exists integer i; 0 <= i < length && arr[i] == elt; */

/*@ requires sorted(arr,len);
requires len >= 0;
requires \valid(arr+(0..(len-1)));

assigns \nothing;

behavior exists:
assumes mem(query, arr, len);
ensures 0 <= \result < len;
ensures arr[\result] == query;

behavior not_exists:
assumes ! mem(query, arr, len);
ensures \result == -1; */

int find_array(int* arr, int len, int query);

The firstrequires clause of the function now uses the predicatesorted while theassumes
clauses of both behaviors use predicatemem.

Discussion.Some students have difficulties with this question since they do not remark
that theassumes clauses of both behaviors are the exact opposite to each other: a minimal
logical background is actually required here. After that, we can explain the difference
between a predicate (a parameterized logical proposition), a logic function (whichde-
finesa logical term depending on its parameters), and a programming function (which
computesa value depending on its parameters). The three notions allow the user to write
cleaner code/specification without redundancy.

3.4 Testing the specification

Students often feel more comfortable when they can interactwith the computer to gain
confidence in their answer. Unlike in the verification phase of Sec. 4, usual specification
process does not allow such interactions, except for type-checking the ACSL contract.
It is possible to overcome this issue by providing a test function that calls the specified
function on sample cases: the specification written by the students must then imply the
assertions of the test function.

Question 6.Check withJESSIEthat your specification allows to prove the assertions of
the following function (note that the pre-condition of the last call should not be satisfied,
as we deliberately give an unsorted array tofind_array).



void main () {
int array[] = { 0, 4, 5, 5, 7, 9 };
int idx = find_array(array,6,7);
/*@ assert idx == 4; */
idx = find_array(array,6,5);
/*@ assert idx == 2 || idx == 3; */
idx = find_array(array,5,9);
/*@ assert idx == -1; */
array[0] = 6;
// pre-condition should be broken
idx = find_array(array,4,6);

}

Answer.The answers to Questions 3, 4 and 5 pass this test.

Discussion.This question allows students to catch some specification errors by them-
selves. In particular, the fact that a successful call must return a value between0 and
len-1 is often overlooked. When missing, the first two assertions ofmain are not prov-
able: nothing in ACSL prevents some memory cellarr[i] with an indexi outside of
0..5 from containingquery as well. Although some guidance may be required to go
from noticing that an assertion is not proved up to writing a correct specification of
find_array, this approach is very helpful for testing the specificationand explaining
specification problems.

3.5 Modular verification and function calls

Question 7.In the following program, the functionsabs andmax are declared but not
defined.
// returns absolute value of given integer x>INT_MIN
int abs ( int x );

// returns maximum of x and y
int max ( int x, int y );

// returns maximum of absolute values of given integers x>INT_MIN and y>INT_MIN
int max_abs( int x, int y ) {

x=abs(x);
y=abs(y);
return max(x,y);

}

a) Specify the three functions and prove the functionmax_abs.
b) Remove the precondition of the functionmax_abs and re-run the proof. Observe and

explain the proof failure.
c) Remove the postcondition of the functionmax and re-run the proof. Observe and

explain the proof failure.

Answer.a) Here is a specified program that is proved byJESSIE. The specifications are
pretty much self-explanatory based on the previous examples.
#include<limits.h>
/*@ requires x > INT_MIN;

ensures x >= 0 && \result == x || x < 0 && \result == -x;
assigns \nothing; */

int abs ( int x );



/*@ ensures \result >= x && \result >= y;
ensures \result == x || \result == y;
assigns \nothing; */

int max ( int x, int y );

/*@ requires x > INT_MIN && y > INT_MIN;
ensures \result >= x && \result >= -x &&
\result >= y && \result >= -y;

ensures \result == x || \result == -x ||
\result == y || \result == -y;

assigns \nothing; */
int max_abs( int x, int y ) {

x=abs(x);
y=abs(y);
return max(x,y);

}

b) If the precondition of the functionmax_abs is removed,JESSIEdoes not manage to
prove that the precondition ofabs is satisfied each time it is called. Indeed, in modular
verification the precondition must be ensured by the caller,and it cannot be proved if
the inputs ofmax_abs can be equal toINT_MIN.

c) If the postconsition of the functionmax is removed,JESSIEcannot prove the post-
condition ofmax_abs. Indeed, the proof of the caller relies on the contract of thecallee
(whose code is not necessarily defined in the same file).

Discussion.This question illustrates specific roles of preconditions and postconditions
in modular verification. Note that pre- and postconditions of the caller and of the callee
have dual roles in the caller’s proof. The precondition of the caller is assumed and the
postcondition of the caller must be ensured. On the contrary, the precondition of the
callee must be ensured by the caller, while the postcondition of the callee is assumed in
the caller’s proof.

4 Lesson on program verification

Once a correct specification has been written, the next exercises deal with verifying
that a given implementation is conforming to this specification. The main difficulty
here consists in finding appropriateloop invariantsfor each loop of the program. An
invariant is a property that holds when entering the loop thefirst time and is preserved
by one step of the loop. In other words, it must hold after0 step, and if we assume that
it holds aftern steps, it must hold aftern+1 step. By induction, the invariant thus holds
when we exit the loop1. Moreover, the invariants arethe only thingthat is known about
the state of the program after the loop. They must thus be strong enough to allow us to
prove post-conditions, but not too strong, or we won’t be able to prove the invariants
themselves. Finding the correct balance requires some training as explained below.

4.1 Safety

Question 8.Write loop invariants to prove all safety properties for the following im-
plementation offind_array.

1 Loop termination is handled in the next section.



int find_array(int* arr, int length, int query) {
int low = 0;
int high = length - 1;
while (low <= high) {

int mean = low + (high -low) / 2;
if (arr[mean] == query) return mean;
if (arr[mean] < query) low = mean + 1;
else high = mean - 1;

}
return -1;

}

Answer.The following invariants show thatlow and high (thus mean) are within arr’s
bounds:
/*@ loop invariant 0 <= low;

loop invariant high < length; */

Discussion.Students usually don’t have issue finding these invariants,as they arise quite
naturally from the loop structure itself. An important point however is thatlow <= high

is notan invariant, as it is not preserved by the last step of an unsuccessful search, where
we end up withlow == high + 1.

4.2 Loop invariants

Question 9.Prove that the invariants written in Question 8 hold (fix themif necessary).

Answer.The invariants above are correct.

Question 10.Write the loop invariants that allow to prove the post-conditions of be-
haviorsexists andnot_exists and prove that they are correct.

Answer.The following invariants are necessary:
/*@ loop invariant \forall integer i; 0 <= i < low ==> arr[i] < query;

loop invariant \forall integer i; high < i < length ==> arr[i] > query; */

Discussion.These invariants are much more difficult to write than the ones that ensure
safety. Indeed, they do not stem directly from the code itself. Rather, they provide the
main correctness argument of the algorithm: because the array is sorted, the array ele-
ments to the left oflow are smaller thanquery, while the array elements to the right of
high are greater thanquery. Hence, we can restrict the search to the intervallow..high.

4.3 Loop variant and program termination

Question 11.Provide aloop variant that ensures that the loop always terminates.

Answer.We need a positive integer expression decreasing at each step, so we take:
/*@ loop variant high - low + 1; */

Discussion.A helpful hint to find a loop variant without giving a formal definition is
to look for an upper bound for the number of remaining loop iterations. At each step
we decrease the diameter of the intervallow..high where the elementquery can still be
found, hencehigh-low+1 gives such an upper bound. Program termination is usually left
at the end of the lesson as it is mainly orthogonal to the otherproof obligations.



5 Teaching feedback and discussion

Our experience shows that a deep theoretical course on Floyd-Hoare logic is not manda-
tory for the practical session on proof of programs. After comparing students having
missed the lectures with others who have attended a completetheoretical course, we
can say that, for program specification and proof exercises,good programming skills
seem even more helpful than good knowledge of the underlyingtheory. Theoretical
courses by themselves are definitely not sufficient to learn proof of programs.

The exercises of this lesson correspond to the difficult points that should be thor-
oughly exercised in practice. First, it is important to write correct specifications (Sec-
tion 3). Proving a functionf with a wrong specification is a very common error. For
instance, a too strong precondition that prevents callingf in legitimate contexts or a too
weak postcondition that forgets to state something about the state after the execution
of f will not be detected by runningJESSIEonf alone. When writing a postcondition,
most students focus on the returned values and forget to specify that the function under
verification does not modify variables when it is not supposed to do so.

Section 3.4 shows how students can “test” their specification before attempting to
verify the implementation. Nevertheless, the instructor should check the specification
of each student even if everything is proved at the end.

A major difficulty in program verification is to understand the role of an invariant.
Many students need some time to understand that a loop invariant is a summary of the
effects of then first steps of the loop and that this is the only thing that is known on the
state of the program after these steps. Thus, writing an invariant strong enough to enable
proving the annotations below the loop (including post-conditions) and preserved by a
loop step is often a delicate task.

Another important difficulty of proof of programs with automatic tools is analysis
of proof failures. Basically, a proof failure can be due to anincorrect implementation
(a bug), a wrong specification or the incapability of the automatic prover to prove the
the required property. In the first case, it is sufficient to fixthe bug. In many cases, test
generation can help to find a counter-example. In the second case, the unproved property
is not necessarily the erroneous one. Attentive analysis ofthe proof obligation may help
to understand its proof failure. The problem can be due to an earlier incorrect or missing
clause (such as a precondition, a loop invariant of the current loop, a loop invariant of
a previous, or outer, or inner loop, the contract of a previously called function, etc.).
Additional statements (assertions, lemmas, stronger loopinvariants, etc.) may help the
prover in some cases. They can also help the user to understand which part of a complex
property is too difficult for the automated prover. Finally,when nothing else works, an
interactive proof assistant (such as Isabelle, Coq and PVS)can be used to finish the
proof.

6 Related work and conclusion

Usage of tools in formal verification courses is getting sometraction [12]. In particular,
the KeY tool for Java is used at a couple of universities [13].Like KeY, FRAMA -C
andJESSIEbenefit from their open-source nature and the fact that they target existing



languages, already known to students. However, they are used for the moment at a very
small number of institutions [14], and very limited introductory material with exerci-
ces is available [15], [16, Chap. 9]. FRAMA -C is also part of an experiment in online
programming training [17].

In this paper, we demonstrated by a small practical session how JESSIEcan be used
for teaching formal software verification. Our experience shows thatJESSIEis perfectly
adequate for this purpose since it benefits from an expressive specification language,
adequate documentation, ease of use and installation. We hope that this work will be
helpful in teaching proof of programs and will contribute tothe introduction of formal
methods based techniques and tools into industrial software engineering.

References

1. Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J., Schoen, D.: Apply-
ing Formal Proof Techniques to Avionics Software: A Pragmatic Approach. In: the World
Congress on Formal Methods in the Development of Computing Systems.(1999) 1798–1815

2. Delmas, D., Duprat, S., Baudin, P., Monate, B.: Proving temporalproperties at code level
for basic operators of control/command programs. In: 4th EuropeanCongress on Embedded
Real Time Software. (2008)

3. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10) (1969) 576–580 and 583

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM18(8) (1975) 453–457

5. Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti,A., Signoles, J., Yakobowski,
B.: Frama-C User Manual. (October 2011)http://frama-c.com.

6. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C, a
program analysis perspective. In: the 10th International Conference on Software Engineering
and Formal Methods (SEFM 2012). Volume 7504 of LNCS., Springer (2012) 233–247

7. Moy, Y.: Automatic Modular Static Safety Checking for C Programs. PhD thesis, University
Paris 11 (January 2009)

8. Moy, Y., March́e, C.: Jessie Plugin Tutorial
9. Correnson, L., Dargaye, Z.: WP Plug-in Manual, version 0.5. (January 2012)

10. Baudin, P., Fillîatre, J.C., Hubert, T., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. (February 2011)

11. Correnson, L., Signoles, J.: Combining Analyses for C ProgramVerification. In: the 17th
International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2012).
Volume 7437 of LNCS., Springer (2012) 108–130

12. Feinerer, I., Salzer, G.: A comparison of tools for teaching formal software verification.
Formal Aspects of Computing21(3) (2009)

13. KeY Project: Uses of KeY for teachinghttp://www.key-project.org/teaching/.
14. Frama-C: Uses of Frama-C for teachinghttp://bts.frama-c.com/dokuwiki/

doku.php?id=mantis:frama-c:teaching.
15. Burghardt, J., Gerlach, J., Hartig, K., Pohl, H., Soto, J.: ACSLby Example. A fairly complete

tour of ACSL features through various functions inspired from C++ STL. Version 7.1.0 (for
Frama-C Nitrogen).

16. Almeida, J.C.B., Frade, M.J., Pinto, J.S., de Sousa, S.M.: Rigorous Software Develop-
ment, An Introduction to Program Verification. Undergraduate Topics in Computer Science.
Springer (2011)



17. Quan, T., Nguyen, P., Bui, T., Le, T., Nguyen, A., Hoang, D., Nguyen, V., Nguyen, B.:
iiOSProTrain: An Interactive Intelligent Online System for Programming Training. Journal
of Advances in Information Technology3(1) (2012)


