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Abstract. To help formal verification tools to make their way into industry, they
ought to be more widely used in software engineering classes. This tuiaria
per serves this purpose and provides a lesson on formal specifieatibproof

of programs with RAMA-C, an open-source platform dedicated to analysis of C
programs, an@csL, a specification language for C.
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1 Introduction

Recent advances on proof of programs based on deductivedsedtiow verification
tools to be successfully integrated into industrial veaifion processes [1, 2]. However,
their usage remains mostly confined to the verification ofrttest critical software.
One of the obstacles to their deeper penetration into ingisthe lack of engineers
properly trained in formal methods. A wider use of formalifieation methods and
tools in industrial verification requires their wider teawhand practical training for
software engineering students as well as professionals.

This tutorial paper presents a lesson on proof of prograntearform of several
exercises followed by their solutions. It is based on ouregignce in teaching at sev-
eral French universities over the last four years. This Bgpee shows that, for the
majority of students, theoretical courses (like lectuneddoare logic [3] and weakest
precondition calculus [4]) are insufficient to learn prodfppograms. We discuss the
difficulties of the lesson for a student, necessary backgipmost frequent mistakes,
and emphasize some points that often remain misunderstbéxllesson assumes that
students have learned the basics of formal specificatiom asiprecondition, postcon-
dition, invariant, variant, assertion.

In our lesson, we useFAMA-C [5, 6], an open-source platform dedicated to the
analysis of C programs and developed at CEA LIST. Being gqmemee is an important
advantage for teachingRAMA -C is available on all major Linux distributions, and can
be easily installed by a local network administrator at amyersity. FRAMA-C gathers
several static analysis techniques in a single collaba&tamework. In particular, two
different plug-ins are dedicated to proof of programsssie[7, 8] andwp [9]. The
latter is newer and aims to be better integrated into theofekie platform. Up to now,
we have usedessIEin our lessons because it is more stable and its level of riatieq
into the platform is not an issue for teaching.



All static analyzers of RAMA-C, includingJESSIE share a common specification
language, calledcsL [10]. This language allows ®amA-C analyzers to collaborate
in an effective way [11]. Before proving programs, the studemust learn to formally
specify them, so we includecsL in our lesson which thereby mixes program spec-
ification and program verificatioracsL syntax was designed to stay close to C, and
students do not have any problem to learn it on-the-fly witingliage manual at hand.
Thus we do not include a detailed presentation@$L in this paper.

The paper is organized as follows. The lesson is presentiida parts: discovery
of the JEssIEtool (Section 2), specification of C programsAgsL (Section 3) and
their verification withJessie(Section 4). Section 5 presents our teaching experience
feedback. Section 6 provides some related work and conglude

2 Introductory exercices

2.1 Safety checks for arithmetic overflows

Question 1.RunJESSIEto prove the following program:

/*@ensures x >= 0 & \result == x || x < 0 & \result == -x;
assigns \nothing; */
int abs(int x) { return ( x >=0) ? x : -x; }

Can you explain the unproved safety property? Write a prationdestricting the val-
ues ofx, for example, to the interval 1000 . . . 1000 and re-run the proof.

Answer.The postcondition for the given program is proved, kg sIEreports an un-
proved safety check for an arithmetic overflow riskinSincelNT_ M N = - I NT_MAX - 1,
the expressionx provokes an overflow fox = 1 NT_Mm N, Restricting the values of to
—1000. .. 1000 in the precondition avoids this risk, and the proof succéedthe com-
plete specified program:

/*@requires -1000 <= x <= 1000;

ensures x >= 0 & \result == x || x < 0 & \result == -x;
assigns \nothing; =/
int abs(int x) { return ( x >=0) ? x : -x; }

DiscussionArithmetic overflows are responsible for well-known critisoftware crashes,
but most students ignore these issues.siehelps them to understand this point. Notice
that the weakest possible precondition avoiding overflavssd would bex > I NT_M N.
Finally, the contract has a#si gns clause that specifies thats is not supposed to mod-
ify the global state of the program. We will go back on thisuslain the next section.

2.2 Safety checks for pointer validity
Question 2.Consider the following function swapping the values refdipy its inputs:

int swap(int *pl, int *p2) { int tnp = *pl; *pl = *p2; *p2 = tnp; }

a) Specify the postcondition and ruEssIEto prove the program. Explain the results
you observe. Add a precondition and re-run the proof.



b) Explain the role of thassi gns clause you put in the postcondition. (Did you?) Give
an example of a wrong implementation that would be proveddssiewithout it.

Answera) We first add the following postcondition:
/*@ensures \old(*pl) == *p2 && \old(*p2) == *pl;

assigns *pl, *p2; =*/
Here\ ol d(+p1) refers to the value o1 before the calliEssiEproves the postcondition,
but indicates a safety alarm at each dereference of thegueitandp2. Indeed, the
validity of these pointers is supposed to be guaranteed dycafier, so it should be
explicitly specified by the precondition as follows:

/*@requires \valid(pl) & \valid(p2);
ensures \old(*pl) == *p2 && \old(*p2) == xpl;
assigns *pl, *p2; =*/
int swap(int *pl, int *p2) { int tnp = *pl; *pl = *p2; *p2 = tnp; }

After runningJESSIEagain, we see that the safety properties are now proved &s wel

b) Theassi gns clause specifies here which variables can be modified by thaifun.
Without this clause, the following erroneous implemeiatattan be proved:

int shared; // a global variable that should not be nodified in swap
int swap(int *pl, int *p2) { shared = *pl; *pl = *p2; *p2 = shared; }

DiscussionThe students often forget to specify validity of memory ases. This exer-
cise insists on this point and shows safety checks for poualédity in JESSIE Another
common error is a missing or incorregki gns clause. Considering counter-examples
is an excellent way to make students aware of the problem.

3 Lesson on program specification

The goal of this lesson is to formally specify a well-knowr ban-trivial function that
searches an element in a sorted array. This can be split @radesteps of increasing
difficulty to introduce the most usefalcsL constructs.

3.1 Function contracts

Question 3.Write theAcsL formal specification corresponding to the following infor-
mal specification of functioni nd_arr ay. Explain its clauses.

/+ [find_array(arr, len, query)] returns any index [idx] of the sorted array
[arr] of length [l en] such that arr[idx] == query. |If such an index does not
exist, it returns -1. =*/

int find_array(int+ arr, int len, int query);

AnswerHere is a correct answer which providesui r es, ensures andassi gns clauses.

/*@requires len >= 0;
requires \valid(arr+(0..(len-1)));

requires \forall integer i, j; 0 <=i <=j <len ==>arr[i] <= arr[j];
ensures (\exists integer i; 0 <=i < len & arr[i] == query) ==>
0 <= \result <len &% arr[\result] == query;
ensures (\forall integer i; 0 <=1i <len ==>arr[i] != query) ==>
\result == -1;

assigns \nothing; =/
int find_array(int+ arr, int len, int query);



The three preconditions respectively say that:

— the given array length must be positive or zero,
— the array must contain at least valid memory cells which can be safely read,
— the array must be sorted.

The twoensures clauses respectively state that:

— ifthe array containguery at some index betweerandi en- 1, then the valueresui t
returned by the function is between these boundsaandresult] == query,
— if all the elements of the array are differentqéry, the returned value isi.

The assi gns clause specifies here that no memory location may be modiffeithéd
function since it must have no observable effect on the mgrinom the outside.

DiscussionMaybe surprisingly, the main mistake is not related to baysks like com-
plex quantifications and implications. Students actuatdtto forget implicit specifi-
cations on the length of the array and the validity of itsc@lisually they do not forget
theassi gns clause after previous exercises). At this point, it is int@aot to emphasize
this specific weakness of informal specifications whichroftentain implicit, unwrit-
ten parts. Additionally, we can show that writing severali res andensures clauses
may be clearer than writing a single clause of each type witig @onjunction.

3.2 Behaviors

Question 4.Modify the previousacsL specification in order to use two distinct behav-
iors corresponding to whether the element y is found or not. Explain your changes.

AnswerHere is a correct answer which defines two behawars s andnot _exi sts.

/*@requires \forall integer i, j; 0 <=i <=j <len ==>arr[i] <= arr[j];
requires |len >= 0;
requires \valid(arr+(0..(len-1)));

assi gns \not hi ng;

behavi or exists:
assumes \exists integer i; 0 <=i < len & arr[i] == query;
ensures 0 <= \result < len;
ensures arr[\result] == query;

behavi or not_exi sts:
assunmes \forall integer i; 0 <=i <len ==>arr[i] != query;
ensures \result == -1; */
int find_array(int+ arr, int len, int query);
Theassunes clauses are the activation conditions of the behaviors: fome behavior
this clause is valid, thensur es clause of this behavior must be satisfied.

Discussion.The usual students’ question is the difference betweessaires clause
(which is an assumption) and &yui res clause (which is also allowed in a behavior and
contains a requirement which must be satisfied by the calteit, needs a proof). It is
also important to explain that behaviors correspond toipeg by cases and to show
that this new specification is much clearer than the prevameswhich is equivalent
and uses implications instead.



3.3 Logical predicates
Question 5.Modify the previous specification to define and use two logicedicates:

— sorted Which states that a given array is sorted,
— memwhich states that an element belongs to a given array.

AnswerHere is a correct answer.

/+~@predicate sorted(int* arr, integer length) =
\forall integer i, j; 0 <=i <=j <length ==> arr[i] <= arr[j];

predicate men(int elt, int* arr, integer length) =
\exists integer i; 0 <=i < length & arr[i] == elt; */

/+*@requires sorted(arr,len);
requires |len >= 0;
requires \valid(arr+(0..(len-1)));

assi gns \not hi ng;

behavi or exi sts:
assunmes nem(query, arr, len);
ensures 0 <= \result < len;
ensures arr[\result] == query;

behavi or not_exi sts:
assumes ! men(query, arr, len);
ensures \result == -1; */
int find_array(int* arr, int len, int query);

The firstrequi res clause of the function now uses the predicateed while theassunes
clauses of both behaviors use predicate

DiscussionSome students have difficulties with this question sincg tleenot remark
that theassunes clauses of both behaviors are the exact opposite to each atiménimal
logical background is actually required here. After that, @an explain the difference
between a predicate (a parameterized logical proposjtalogic function (whichde-
finesa logical term depending on its parameters), and a programfanction (which
computes value depending on its parameters). The three notions tikuser to write
cleaner code/specification without redundancy.

3.4 Testing the specification

Students often feel more comfortable when they can intevibtthe computer to gain
confidence in their answer. Unlike in the verification phasex. 4, usual specification
process does not allow such interactions, except for tyeking the ACSL contract.
It is possible to overcome this issue by providing a test fioncthat calls the specified
function on sample cases: the specification written by théestts must then imply the
assertions of the test function.

Question 6.Check withiessiethat your specification allows to prove the assertions of
the following function (note that the pre-condition of tlast call should not be satisfied,
as we deliberately give an unsorted arrayit@i_array).



void main () {
int array[] ={ 0, 4, 5 5, 7, 91};
int idx = find_array(array,6,7);

/*@assert idx == 4; x/

idx = find_array(array,6,5);
/*@assert idx == 2 || idx == 3; =*/
idx = find_array(array,5,9);
/*@assert idx == -1; =*/

array[0] = 6;

/1 pre-condition should be broken
idx = find_array(array, 4, 6);
}

Answer.The answers to Questions 3, 4 and 5 pass this test.

Discussion.This question allows students to catch some specificatiarseby them-
selves. In particular, the fact that a successful call mestrn a value betweenand
Ien-1 is often overlooked. When missing, the first two assertionsiof are not prov-
able: nothing in ACSL prevents some memory eelli] with an indexi outside of
o..5 from containingquery as well. Although some guidance may be required to go
from noticing that an assertion is not proved up to writingoarect specification of
find_array, this approach is very helpful for testing the specificatéord explaining
specification problems.

3.5 Modular verification and function calls

Question 7.In the following program, the functions:s andnex are declared but not
defined.

/1 returns absolute value of given integer x> NT_M N
int abs ( int x );

/1 returns maxi mum of x and y
int mx (int x, inty);

/1 returns maxi mum of absol ute val ues of given integers x> NT_MN and y>I NT_M N
int max_abs( int x, int y) {

x=abs(x);

y=abs(y);

return max(x,y);

a) Specify the three functions and prove the functien abs.

b) Remove the precondition of the functiesx_abs and re-run the proof. Observe and
explain the proof failure.

c) Remove the postcondition of the functiesx and re-run the proof. Observe and
explain the proof failure.

Answera) Here is a specified program that is provedimgsie The specifications are
pretty much self-explanatory based on the previous exanple

#include<limts. h>

/*@requires x > INT_MN,
ensures x >= 0 & \result == x || x < 0 && \result == -x;
assigns \nothing; */

int abs ( int x );



/+~@ensures \result >= x &% \result >=y;
ensures \result == x || \result ==
assigns \nothing; =*/

int max (int x, inty);

/*@requires x > INT_MN &y > INT_MN
ensures \result >= x & \result >= -x &&
\result >=y && \result >= -y;
ensures \result == x || \result == -x ||
\result ==y || \result == -y;
assigns \nothing; =*/
int max_abs( int x, int y ) {
x=abs(x);
y=abs(y);
return max(x,y);

}

b) If the precondition of the functiorex_abs is removed JESSIEdoes not manage to
prove that the precondition abs is satisfied each time it is called. Indeed, in modular
verification the precondition must be ensured by the cadled, it cannot be proved if
the inputs ofrax_abs can be equal tonT_m N.

c) If the postconsition of the functiomax is removed JESSIEcannot prove the post-
condition ofmax_abs. Indeed, the proof of the caller relies on the contract ofchiéee
(whose code is not necessarily defined in the same file).

DiscussionThis question illustrates specific roles of preconditiond postconditions
in modular verification. Note that pre- and postconditiohthe caller and of the callee
have dual roles in the caller’s proof. The precondition & tlaller is assumed and the
postcondition of the caller must be ensured. On the conttheyprecondition of the
callee must be ensured by the caller, while the postcomditiche callee is assumed in
the caller’s proof.

4 Lesson on program verification

Once a correct specification has been written, the next mesrdeal with verifying
that a given implementation is conforming to this specifaat The main difficulty
here consists in finding appropridteop invariantsfor each loop of the program. An
invariant is a property that holds when entering the looffitlsetime and is preserved
by one step of the loop. In other words, it must hold aftstep, and if we assume that
it holds aftern steps, it must hold after+ 1 step. By induction, the invariant thus holds
when we exit the looh Moreover, the invariants athe only thingthat is known about
the state of the program after the loop. They must thus begtaough to allow us to
prove post-conditions, but not too strong, or we won't beedabl prove the invariants
themselves. Finding the correct balance requires sommeérigaas explained below.

4.1 Safety

Question 8.Write loop invariants to prove all safety properties for toédwing im-
plementation ofind_array.

! Loop termination is handled in the next section.



int find_array(int+ arr, int length, int query) {
int low = 0;
int high = length - 1;
while (low <= high) {
int mean = low + (high -low) / 2;
if (arr[mean] == query) return nean;
if (arr[nmean] < query) low = nean + 1;
el se high = nmean - 1;
}

return -1;

}

Answer.The following invariants show thabw andni gh (thusnean) are withinarr’s
bounds:

/@1 oop invariant 0 <= | ow,
loop invariant high < length; =/

DiscussionStudents usually don’t have issue finding these invariasts)ey arise quite
naturally from the loop structure itself. An important poilowever is thatow <= hi gh

is notan invariant, as it is not preserved by the last step of anaoessful search, where
we end up with ow == high + 1.

4.2 Loop invariants
Question 9.Prove that the invariants written in Question 8 hold (fix thénecessary).
Answer.The invariants above are correct.

Question 10.Write the loop invariants that allow to prove the post-coindis of be-
haviorsexi sts andnot _exi sts and prove that they are correct.

Answer.The following invariants are necessary:

/@1l oop invariant \forall integer i; 0 <= i <low==>arr[i] < query;
loop invariant \forall integer i; high <i < length ==> arr[i] > query; */

DiscussionThese invariants are much more difficult to write than thesathat ensure
safety. Indeed, they do not stem directly from the codefit&ather, they provide the
main correctness argument of the algorithm: because thg &risorted, the array ele-
ments to the left of ow are smaller thaguery, while the array elements to the right of
hi gh are greater thatuery. Hence, we can restrict the search to the interval. ni gh.

4.3 Loop variant and program termination
Question 11.Provide a oop vari ant that ensures that the loop always terminates.

AnswerWe need a positive integer expression decreasing at eggtssteve take:
/+@1 oop variant high - low + 1; */

Discussion A helpful hint to find a loop variant without giving a formal filgtion is

to look for an upper bound for the number of remaining loopaitiens. At each step
we decrease the diameter of the intemnal . hi gh where the elemenjuery can still be
found, hencei gh-1 ow+1 gives such an upper bound. Program termination is usudtly le
at the end of the lesson as it is mainly orthogonal to the qihaof obligations.



5 Teaching feedback and discussion

Our experience shows that a deep theoretical course on4Howde logic is not manda-
tory for the practical session on proof of programs. Aftemparing students having
missed the lectures with others who have attended a completeetical course, we
can say that, for program specification and proof exercigesd programming skills
seem even more helpful than good knowledge of the underliiegry. Theoretical
courses by themselves are definitely not sufficient to leesofpf programs.

The exercises of this lesson correspond to the difficult sdimat should be thor-
oughly exercised in practice. First, it is important to writorrect specifications (Sec-
tion 3). Proving a functiori with a wrong specification is a very common error. For
instance, a too strong precondition that prevents callinglegitimate contexts or a too
weak postcondition that forgets to state something abauttate after the execution
of f will not be detected by runningessieonf alone. When writing a postcondition,
most students focus on the returned values and forget tafgpieat the function under
verification does not modify variables when it is not supplgedo so.

Section 3.4 shows how students can “test” their specifindtiefore attempting to
verify the implementation. Nevertheless, the instructwyudd check the specification
of each student even if everything is proved at the end.

A major difficulty in program verification is to understancetiole of an invariant.
Many students need some time to understand that a loopamiasia summary of the
effects of then first steps of the loop and that this is the only thing that isvian on the
state of the program after these steps. Thus, writing amiamsstrong enough to enable
proving the annotations below the loop (including posteitons) and preserved by a
loop step is often a delicate task.

Another important difficulty of proof of programs with autatic tools is analysis
of proof failures. Basically, a proof failure can be due toicorrect implementation
(a bug), a wrong specification or the incapability of the auatic prover to prove the
the required property. In the first case, it is sufficient talffi® bug. In many cases, test
generation can help to find a counter-example. In the secas®] the unproved property
is not necessarily the erroneous one. Attentive analysissgbroof obligation may help
to understand its proof failure. The problem can be due t@direeincorrect or missing
clause (such as a precondition, a loop invariant of the ntito®p, a loop invariant of
a previous, or outer, or inner loop, the contract of a presiipgalled function, etc.).
Additional statements (assertions, lemmas, strongerilo@iants, etc.) may help the
prover in some cases. They can also help the user to undergtach part of a complex
property is too difficult for the automated prover. Finallhen nothing else works, an
interactive proof assistant (such as Isabelle, Coq and Ré¥f)be used to finish the
proof.

6 Related work and conclusion

Usage of tools in formal verification courses is getting sraetion [12]. In particular,
the KeY tool for Java is used at a couple of universities [L#e KeY, FRAMA-C
and JEssIEbenefit from their open-source nature and the fact that thiget existing



languages, already known to students. However, they atkfaséhe moment at a very
small number of institutions [14], and very limited intradary material with exerci-
ces is available [15], [16, Chap. 9]REMA-C is also part of an experiment in online
programming training [17].

In this paper, we demonstrated by a small practical sessisrubBssiecan be used
for teaching formal software verification. Our experienicevss thatlESSIES perfectly
adequate for this purpose since it benefits from an expeesgigcification language,
adequate documentation, ease of use and installation. Y that this work will be
helpful in teaching proof of programs and will contributetib@ introduction of formal
methods based techniques and tools into industrial scétemagineering.
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