
Soundness, Evidence
and Discipline in

High-Assurance Software

Roderick Chapman,
Director, Protean Code Limited
Honorary Visiting Professor, Dept. of Computer Science, University of York

Contents
• Formal? Sound?

• Why bother with Formal?

• Observations

• Golden Rules

• Homework

Formal? Sound?
• DO-333 (para FM.1.6.1) says

“…to be formal, a model should
have an unambiguous,
mathematically defined syntax
and semantics.”

Formal? Sound?
• And goes on (para FM.1.6.2) to say

“…an analysis method can only be
regarded as formal analysis if its
determination of property is sound.
Sound analysis means that the
method never asserts a property to be
true when it is not true.”

Formal? Sound?
• In English... This means...

1. Languages where you (and a tool) know exactly what it
means..

2. Tools that you can trust (with justification)...

• Sound tool says: “There are definitely no defects...”

• Unsound tool says: “I’ve tried my hardest and I can’t
find any more defects...”

Quiz time...
“The machine interprets whatever it is told in a quite definite

manner without any sense of humour or sense of
proportion...

Unless in communicating with it one says exactly what one
means, trouble is bound to result.”

Alan Turing

Lecture to the London Mathematical Society, 1947

“Proof?”
• If a supplier says

“Our code has been proven to be OK”
• Should you believe them?

• What has been “proven” anyway?

• What assumptions have they made?

• (What assumptions did the tool vendor make for them?)

“Proof” is a social thing...

• Is this True? Who says?

Contents
• Formal? Sound?

• Why bother with Formal?

• Observations

• Golden Rules

• Homework

The dreaded “F Word...”
• At Altran UK, my colleagues have used Formal languages

and analyses for many years:

• In specification: e.g. Z, CSP, SCADE etc.

• In “code”: e.g. SPARK Ada subset + tools.

• What happens when you “Go Formal”? Is it worth it?

Why bother with Formal?

Why bother with Formal?

Thinking and Tooling exposes...

Ambiguity…

Thinking and Tooling exposes...

Contradiction…

Thinking and Tooling exposes...

Incompleteness…

Thinking and Tooling exposes...

#include <customer_conversation.h>

Formal notations...

• ...exhibit semantic consistency.

• In short, my “code” means exactly the same thing to:
• All compilers
• All “target” machines
• All verification tools
• The person that wrote it...
• The person that reviews it...
• The person that has to maintain it in N years time...

Semantic consistency...
A side-benefit
• If my “Code” has exactly one meaning, then all verification

tools should give the same results, right?

• Well... nearly... False-positives will be different...

• Some tools will be “better” than others at detecting certain
defects.

• Enables a rational market for diverse verification tools.

• Counter-example: try to get consistent results from 2 or more
MISRA C tools... See what happens!

And finally...
Formal notations have longevity...
• If my “Code” has the same meaning in twenty years time

as it does now.

• I can change compiler and target machine and it should
just work...

• This happens with long-lived systems, for example...
“mid life upgrade” etc.

Contents
• Formal? Sound?

• Why bother with Formal?

• Observations

• Golden Rules

• Homework

Does Soundness matter?

• “Soundness doesn’t matter”

• Who says...

• Err...Tools vendors with unsound tools...

• The market has spoken...

• The market is broken?

Using sound verification tools...
Theorem prover

says “no”

SAT solver says
“counter-example”

Using sound verification tools...
• The first few months can be pretty depressing...

• Everything I do is wrong! L

• But you get used to it...Soundness makes me
Humble...

• Eventually...You learn to beat the tools...

• You learn trust the tools...

Do you trust a tool?

• Trust in verification tools is hard-won and easily-lost.

• Problem: almost all the “big name” static verification tools
are blatantly (and some...honestly) unsound for verification
of non-trivial properties...

• Why?

• See Coverity’s “Billion lines of code later...” article in
CACM 2010. In short: the market decided...

Do you trust a tool?
• Time for “soundness cases”?

• Tool vendor presents “Soundness
case” (i.e. “Why you should trust
us...”) including

• Assumptions

• Defect history and corrective actions...

• Reference to underlying maths

• Lack of counter-evidence.

A social proof for Soundness?

• If “Formal Proof” of tool soundness is too hard,
can we find a “Social Proof”???

• Possibly...

• Question: if tools says “No defects of class X”, do you still look for X in any
later verification activity (like review and testing)? Do you ever find a class
X defect?

• No? Congratulations... You are treating the tool “as-if sound.”

• Problem: convince your customer and regulator that the tool’s evidence is
trustworthy...

Observation

• We need to advocate and teach

“Verification Driven Design”
• Including consideration of all the forms (both static and

dynamic) of verification that are needed for a particular
project.

• The current fad for “Test Driven Design” places too much
emphasis on dynamic verification criteria to establish
fitness-for-purpose. (e.g. “We tested it lots...”)

Observation

• Google for “Formal Verification” – what do you notice?

• “Formal” is now regarded as standard practice in the
design of hardware, especially in the design of silicon
SoCs, VLSI, FPGAs etc...

• How come?

A Fumble Future?

• What about software?

• Turing’s advice was ignored... L

• Languages became more complex and more ambiguous.

• Even Rust repeats design errors from C... L L

• Signs of hope: SCADE, SPARK Ada, Frama-C, Eiffel, CakeML,
Cryptol, Formal ARM ISA etc. etc.

Contents
• Formal? Sound?

• Why bother with Formal?

• Observations

• Golden Rules

• Homework

Golden Rules

• An old one, but a good one...

Garbage In, Garbage Out
Or...

“You can’t polish dirt”

Golden Rules

No Verification without Specification
But...

It’s OK if the “specification” is a
universal and implicit rule such as

“No buffer overflows”.

In Conclusion...

• Formal + Sound + Humble can be done... And it works...

• Formality in verification makes you Humble...

“It’s like Jazz – hard at first, but worth it in the long run...”
Peter Amey, SPARK Team.

• Formality makes you better.

Contents
• Formal? Sound?

• Why bother with Formal?

• Observations

• Golden Rules

• Homework

Homework (1)

• If you’re a “Programmer”

• Read Alan Turing’s 1947 Lecture to the London
Mathematical Society...

• See just how far ahead Turing was!

Homework (2)

Questions…

