Sandia
Exceptional service in the national interest @ National

Laboratories

The Q Compiler

for Verifying High-Consequence Controls
Jon Aytac

6/27/18
©ENERGY VIS

ary of
0003525, SAND NO. T8D

Sandia National Laboratories is a mulfimission Iaboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholy owned subsic
inc., for the US. Department of Energy's

Sandia
National

Motivation .

m Suppose you believe that

m Designs of High Consequence Systems should come with formal
proofs of safety and reliability

6/27/18 2
—

Sandia
National

Motivation .

m Suppose you believe that
m Designs of High Consequence Systems should come with formal
proofs of safety and reliability
m Or, at least, Designers of High Consequence Systems should be
able to check whether their designs satisfy some safety and
reliability properties

6/27/18
—

Sandia
National
Laboratories

Motivation

m Suppose you believe that
m Designs of High Consequence Systems should come with formal
proofs of safety and reliability
m Or, at least, Designers of High Consequence Systems should be
able to check whether their designs satisfy some safety and
reliability properties
m So you give a presentation to decision makers advocating the
adoption of formal methodologies

6/27/18
—

Sandia
National
Laboratories

Motivation

m Suppose you believe that
m Designs of High Consequence Systems should come with formal
proofs of safety and reliability
m Or, at least, Designers of High Consequence Systems should be
able to check whether their designs satisfy some safety and
reliability properties
m So you give a presentation to decision makers advocating the
adoption of formal methodologies

m They don’t have time to read everything, but they like to stay
abreast of what’s going on in the literature...

6/27/18 2
—

Sandia
National
Laboratories

Disaster!

and they show you this paper of Vanhoef and Piessens in 2017

Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2

Mathy Vanhoef Frank Piessens
imec-DistriNet, KU Leuven imec-DistriNet, KU Leuven
Mathy.Vanhoef@cs.kuleuven.be Frank Piessens@cs.kuleuven.be

which describes security vulnerabilities in a protocol proven secure in
this paper of He et al in 2005

A Modular Correctness Proof of IEEE 802.11i and TLS

Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, John C. Mitchell
Electrical Engineering and Computer Science Departments,
Stanford University, Stanford, CA 94305-9045

6/27/18 3

Sandia
National
Laboratories

Disaster!

He et al Proved Security Properties for a Composition of Protocols ...

Our proof consists of separate proofs of specific security
properties for 802.11i components - the TLS authentication
phase, the 4-Way Handshake protocol and the Group Key
Handshake protocol. Using a new form of PCL composition

1 I 1

He et al

6/27/18

Disaster! .

... The Attack didn’t Violate Those Properties ...

Interestingly, our attacks do not violate the security properties
proven in formal analysis of the 4-way and group key handshake.
In particular, these proofs state that the negotiated session key
remains private, and that the identity of both the client and Access
Point (AP) is confirmed [39]. Our attacks do not leak the session

Vanhoef and Piessens

6/27/18

Sandia
National

Disaster! .

... The Crucial Properties Were Temporal...
key installation. Put differently, their models do not state when a
negotiated key should be installed. In practice, this means the same

key can be installed multiple times, thereby resetting nonces and
replay counters used by the data-confidentiality protocol.

Vanhoef and Piessens

6/27/18 6

Disaster =

Laboratories

... and the 802.11i amendment didn’t specify the protocols in such a
way that questions about temporal properties could even be posed ...

The 802.11i amendment does not contain a formal state machine de-

scribing how the supplicant must implement the 4-way handshake.
Instead, it only provides pseudo-code that describes how, but not
when, certain handshake messages should be processed [4, §8.5.6].2

Vanhoef and Piessens

6/27/18

Sandia
National

... Worse yet, the Map isn’t the Territory e

Another somewhat related work is that of Beurdouche et al. [14]
and that of de Ruiter and Poll [27]. They discovered that several
TLS implementations contained faulty state machines. In particular,
certain implementations wrongly allowed handshake messages to
be repeated. However, they were unable to come up with example

Vanhoef and Piessens

6/27/18 8

Sandia
National
Laboratories

... Vanhoef and Piessens Proved CounterMeasure
Correctness in NuSMV...

Proving the correctness of the above countermeasure is straight-
forward: we modeled the modified state machine in NuSMV [23],
and used this model to prove that two key installations are always
separated by the generation of a fresh PTK. This implies the same
key is never installed twice. Note that key secrecy and session
authentication was already proven in other works [39].

Vanhoef and Piessens

6/27/18 9

Jedi Mind Trick =M

m So then the decision makers say

6/27/18 10
—

Sandia
National

Jedi Mind Trick s

m So then the decision makers say

m We need a language for the specification of temporal behavior,
preferably one designers would actually use

6/27/18 10
—

Jedi Mind Trick .

m So then the decision makers say

m We need a language for the specification of temporal behavior,
preferably one designers would actually use

m We need to compile these descriptions into languages suitable

for proving (e.g. Why3) and checking (e.g. NuSMV) temporal
properties about compositions of specifications

6/27/18 10

Jedi Mind Trick .

m So then the decision makers say

m We need a language for the specification of temporal behavior,
preferably one designers would actually use

m We need to compile these descriptions into languages suitable
for proving (e.g. Why3) and checking (e.g. NuSMV) temporal
properties about compositions of specifications

m For scalability’s sake, the compiler should allow compositional
reasoning about systems

6/27/18 10

Jedi Mind Trick .

m So then the decision makers say

m We need a language for the specification of temporal behavior,
preferably one designers would actually use

m We need to compile these descriptions into languages suitable
for proving (e.g. Why3) and checking (e.g. NuSMV) temporal
properties about compositions of specifications

m For scalability’s sake, the compiler should allow compositional
reasoning about systems

m We need to prove those properties descend to implementations

6/27/18 10

Sandia
National
Laboratories

What a Coincidence

At this point, you say, we just so happen to have already written a
tool, the () compiler, to do just that!

q_ Compiler C compiler—> micro-controller
Executable Spec. Frama-C formal model checker
SMV | —>NuSMV LTL/CTL formal model checker

SCXML —»-
Why3 Alt Ergo theorem prover/SMT solver
:Coq theorem prover/proof assistant
SVA

VHDL Cadence commercial formal tools

synthesis to hardware

Verilog

VHDL for forensic analysis

6/27/18

Q Compiler e

Designers draw statechart-like diagrams in their specifications, so)
captures these in a statechart-like formal language

q_ Compiler | o compiler-> micro-controller
o

=
Executable Spec. ACSL Frama-C formal model checker
2 = [—>NuSMV LTL/CTL formal model checker
) | som |- [SEml T
LUili e Why3 Alt Ergo theorem prover/SMT solver
Requirements| |Statechart-tool

Coq theorem prover/proof assistant
SVA

VHDL Cadence commercial formal tools

Verilog synthesis to hardware

VHDL for forensic analysis

and compiles them into a multitude of languages. We focus here on

how () compiles into ACSL and SMV to enable a workflow with
FramaC and NuSMV.

6/27/18 12

WorkFlow: Boxes and Arrows (=

The designer writes abstract spec-
Contoler Component ifications for the controller and
Speciication Specficaton the component in a Statechart-like

language, along with system level

Parallel Composttion) . o
properties about their composition

6/27/18 13

WorkFlow: Boxes and Arrows (=

Controller Component — Controller Component
Specification Specification Prop Specification Specification

Parallel Composition

() then generates an LTL model of the composition of abstract
specifications along with the system level properties. These
properties may now be checked with model checking tools like
NuSMV

6/27/18 14

Sandia

National
WorkFlow: Boxes and Arrows e
Controller Component
Specification Specification
Parallel Composition
The Engineers then implement the
controllerin C
Controller Component
System Implementation
6/27/18 15

Sandia

WorkFlow: Boxes and Arrows s

Controller Component
Specification Specification

Parallel Composition

The Engineers need to present
some kind of evidence that the
specified system abstracts the sys-
tem implementation

Controller Component

System Implementation

6/27/18

Sandia
National
Laboratories

WorkFlow: Boxes and Arrows

Controller Component
Prop Specification Specification

In particular, the evidence of ab-
straction must be sufficient for
proofs of properties about the ab-
stract system to imply proofs of
those properties about the system
implementation

Controller Component
Prop

System Implementation

6/27/18
—

Sandia
National

WorkFlow: Boxes and Arrows .

Controller Component
Propsmv Specification Specification

In our context, we are allowed to
focus on stuttering invariant safety
properties

Prop”,m(Controller Component

System Implementation

6/27/18 18
—

Sanda

National _
WorkFlow: Boxes and Arrows e
Controller Component
Specification Specification
Parallel Composition
= .
2 The engineer must therefore
E present evidence that the com-
§ position of specifications weakly
simulates the composition of
implementations
Controller Component
System Implementation
6/27/18 19

Sandia
National
Laboratories

WorkFlow: Boxes and Arrows

Specification Specification
Parallel Composition Only Frama-C meets our require-
ments for reasoning about C pro-
grams, but Frama-C analyzes se-
quential programs. Fortunately,
our C program interacts with com-

ponents through memory mapped
Controller Component I/O

Weak simulation

System Implementation

6/27/18

()=
National
Laboratories

WorkFlow: Boxes and Arrows

Controller Volatile
H So we ask the engineer to present
evidence from which) can con-
struct , in ACSL, a proof obliga-
Pm?i;’;’:jafm tion that the composition of the ab-

stract controller specification with
a volatile environment weakly sim-
ulates the composition of the im-
plementation with a volatile envi-
ronment

C Implementation
Controller || Volatile

6/27/18 21
—

Sandia

National _
Workflow: Boxes and Arrows s
The proof of this yellow, weak simulation arrow is discharged by
Frama-C’s Weakest Precondition plugin. The trick is to obtain the
blue arrows by construction. Then proof of the yellow arrow gives us
our goal, the right column, for free
Volatile Controller Component
Specification component — Specification Specification
Parallel Composition
o e Controller Component
CImplementation System Implementation
Controller || Volatile
Environment
6/27/18 22

Sandia
National

The Boxes are StateChart-like .

The designer writes in a Statechart-like language, by which we mean
a specification language for reactive programs,inductively defined
through hierarchic and parallel composition of transition systems.

alpha -
LAUNCH
ready
o
A2_Region

6/27/18 23

The Boxes: LTS B

A labelled transition system P : LTS is a tuple (Sp, A p, — p, P,), with
SP the set of states, .4 p an alphabet, the transition relation

—pt Ap — P(Sp x Sp) a map from alphabet to relations on states,
and P a set of initial states

6/27/18

Sandia
National

The Boxes: C Programs as LTS s

Example

m a program point and an execution environment (which maps
variables to values) together constitute the program state of a C
program.

6/27/18 25
—

Sandia
National

The Boxes: C Programs as LTS s

Example

m a program point and an execution environment (which maps
variables to values) together constitute the program state of a C
program.

m The program is given by the data of a map from program points
to commands

6/27/18 25
—

Sandia
National
Laboratories

The Boxes: C Programs as LTS

Example

m a program point and an execution environment (which maps
variables to values) together constitute the program state of a C
program.

m The program is given by the data of a map from program points
to commands
m Given a program state, the evaluation of the command found at

that program state’s program point defines a transition to new
program state.

6/27/18 25
—

Sandia
National
Laboratories

The Boxes: C Programs as LTS

Example

m a program point and an execution environment (which maps
variables to values) together constitute the program state of a C
program.

m The program is given by the data of a map from program points
to commands

m Given a program state, the evaluation of the command found at
that program state’s program point defines a transition to new
program state.

m The label of that transition is some predicate on the execution
environment.

6/27/18 25
—

Sandia
National
Laboratories

The Boxes: C Programs as LTS

Example

m a program point and an execution environment (which maps
variables to values) together constitute the program state of a C
program.

m The program is given by the data of a map from program points
to commands

m Given a program state, the evaluation of the command found at
that program state’s program point defines a transition to new
program state.

m The label of that transition is some predicate on the execution
environment.

m In this way, we can think about C programs as labelled transition

systems.

6/27/18 25
—

Sandia
National
Laboratories

The Arrows: Simulation Relations

Definition
m Forany P,Q : LTS with Ap = A, arelation R C Sp X S isa
simulation relation if and only if V(p,q) € R, € Ap,p’ € Sp

@ / /7 «a / / /
p—pp = Jq GSQ=(q—>Qq A(p,q)GR)

Q simulates P, writen P < Q or P — Q, if P, C R71(Q,).

6/27/18 26
—

Sandia
National
Laboratories

The Arrows: Simulation Relations

Definition
m Forany P,Q : LTS with Ap = A, arelation R C Sp X S isa
simulation relation if and only if V(p,q) € R, € Ap,p’ € Sp
N 4 /7 a / /7 /
p—pp = Jq GSQ=(q—>Qq A(p,q)GR)

Q simulates P, writen P < Q or P — Q, if P, C R71(Q,).

m The relation R is said to be a witness for P < (), and Q is said
to be an abstraction of P. When the witness is a function, the
simulation relation is said to be a refinement.

6/27/18 26

Sandia
National
Laboratories

The Arrows: Simulation Relations

Proposition

This preorder is sound in that P <) = trace(P) C trace(Q). So, if
P < Q, then for any P, : Prop(Q) temporal property on Q) and

P p : Prop(P) the corresponding temporal property on F, Py =FPp

6/27/18 27
—

Sandia
National

An Example s

Example
Here, P, < @,
- -
CoroD Cao)
- b a
S Can) Carz)
Py

6/27/18 Q 1 28

Memory Mapped 1/0, Volatile Variables and the Termil@ls‘%“
Abstraction

Definition
The terminal abstraction over the alphabet A is the labeled transition
system1, = (*"’4’_)1/1’*) withVa € A. = ;a0 — * X *.

6/27/18 2
—

Memory Mapped I/O, Volatile Variables and the Termir@ls’%“
Abstraction

Definition
The terminal abstraction over the alphabet A is the labeled transition
system1, = (*,A,—>1A,*) withVa € A. = ;a0 — * X *.

Proposition
The terminal abstraction over a given alphabet abstracts any
machine of the same alphabet VP = (SP, Ap, = p, PO) , P = 1y,

6/27/18

Memory Mapped I/0 and the Terminal Abstraction) .

Example
Let “volatile uint8_t xI;” a declaration of a reference to a volatile

variable of type uint8_t. Then,
A;={(xI ==0),-, (xI == 255)}, and the presence of a volatile

variable in a C program is an asynchronous parallel composition with
1,4, , which we'll write as, C[*1

6/27/18

Sanda

Proving Spec Simulates Implementation s

So we will use the Q compiler and FramacC to prove

a

v linput ==
J_IJ'
Input==a § Input ==a

Input==b

Abstract Controller ‘
A%frama-c
Proves
Weak Simulation

C Implementation
Controller || Volatile
Environment

6/27/18 31
—

Sandia
National
Laboratories

Proving Spec Simulates Implementation

So the designer gives a formal specification of their design in our
statechart-like language, e.g. the ABC example

A
AN
AN
C B
The implementer of the C program should give a witness that their
program is simulated by this abstract transition system.

6/27/18 32
—

Sandia
National
Laboratories

Proving Spec Simulates Implementation

A witness that () simulates P(P < @ or P — () decomposes into a
relation on labels R , and a relation on the states I

Ap—— T 5 P(Spx Sp)

lf [R4] lf (Rs]
o

Ag ——2P(Sg % Sq)

Such that f[RA]O —>P§—>Q of[R/l].

6/27/18 33

Proving Spec Simulates Implementation e

m For C programs thought of as LTS, the labels are expressions
over the execution environment.

type simMap = {
stateRels: stateRelAtom list;
exprRels: exprRelAtom list;
inputRels: inputRelAtom list;
intVarRels: intVarRelAtom list;
valueRels: valueRelAtom list;

ité@deriving yojson]

6/27/18
—

Sandia
National

Proving Spec Simulates Implementation s

m For C programs thought of as LTS, the labels are expressions
over the execution environment.

m so I? , may be given by a relation on internal variables, a
relation on values, and a relation on inputs,

type simMap = {
stateRels: stateRelAtom list;
exprRels: exprRelAtom list;
inputRels: inputRelAtom list;
intVarRels: intVarRelAtom list;
valueRels: valueRelAtom list;

ité@deriving yojson]

6/27/18 34

Sandia
National
Laboratories

Proving Spec Simulates Implementation

m For C programs thought of as LTS, the labels are expressions
over the execution environment.

m so I? , may be given by a relation on internal variables, a
relation on values, and a relation on inputs,

m So the implementer proposes R , and Rg via a JSON file
described by the OCaml simMap type below

type simMap = {
stateRels: stateRelAtom list;
exprRels: exprRelAtom list;
inputRels: inputRelAtom list;
intVarRels: intVarRelAtom list;
valueRels: valueRelAtom list;

ité@deriving yojson]

6/27/18 34

Sandia
National

Proving Spec Simulates Implementation s

Rg should be pairs of program states in the abstract and concrete
program. For our simple ABC example, the relevant execution
context is held by a type

struct machine ({
enum states currState;
enum states nextState;
uint8_t input;

};

typedef struct machine *machine t;

6/27/18 35
—

Sandia
National
Laboratories

Proving Spec Simulates Implementation

In the ABC example, the particular instance of the type carrying the
execution environment part of the program state is declared in the C

as
struct machine theMac;

machine *theMachine() {
return &theMac;

}

so the implementer specifies this in the JSON as
"sMInstance": {"typeName": "machine_t", "instanceName":"theMac"},

6/27/18 36

Sandia
National

Proving Spec Simulates Implementation s

In the ABC example, the initial and final program states in the
abstraction correspond in the C program to the entry and exit
program points given the execution environment

void action_s@8(machine_t mac) {
mac->currState = Ox00;
printf("State A (0x%02x)\n", mac->currState);
if(!read packet(mac)) {
error();
}
if(mac->input == 'b') {
mac->nextState = SB;

else if(mac->input == 'c') {
mac->nextState = SC;

else {
printf("Error on input: %c\n", mac->input);
}
}

6/27/18 37

Sandia
National

Proving Spec Simulates Implementation s

So the implementer gives the relation on states as
"stateRels": [

"abStates": |
{"stateName"™:"SA"}
Il
"impStates”: [
{"stateName":"SA", "funcName":"acti\
on s@0", "args": [{"typeName":"machine t", "instanc\

eName”": "mac"}]}

]
i

6/27/18 38
—

Proving Spec Simulates Implementation

Sandia
National
Laboratories

there being, in this example, no internal variables, the map on

alphabets factors through a map on input variables
"inputRels”: |

"abInputs®": |
{"name":"input"}
Il -
"impInputs”: |
{"funcName":"getInput", ™args":
machine t", "instanceName":"theMac"}]}

typeName":

6/27/18

[{™\

()=
National
Laboratories

Proving Spec Simulates Implementation

and values

;QalueRels':[
{
"abValues" : [{"value™:"AA"}],
"impValues": [{"value":"'a'"}]
Ve
{
"abValues" : [{"value":"BB"}],
"impValues": [{"value":"'b'"}]
},
{
"abValues”" : [{"value™:"CC"}],
"impValues": [{"value":"'c'"}]
}

I

6/27/18 20

Proving Spec Simulates Implementation @ &

6/27/18

Q then generates the ACSL annotations positing the pre and post
conditions from the specification and the simulation relation. A short
clang program searches through the C implementation’s code base
for the program points specified by the stateRel and annotates:

/*@
requires theMac->currState == SA;
behavior behPinner_unit:
assumes ((theMac->currState == SA)&&\trued&\truedq&((!((!(((getInput(theMac))) == (('c')))) &\
& (! (((getInput(theMac))) == (('b')))))) &k (!(((getInput(theMac))) == (('c'))))) &k (! (((getInp\
ut (theMac))) == (('b"')))));
ensures((theMac->currState == SA));

behavior behPouter_SA_SBunit:
assumes ((theMac->currState == SA)&&\trued&\true&&((getInput(theMac))) == (('b')));
ensures((theMac->currState == SB));

behavior behPouter_SA_SCunit:
assumes ((theMac->currState == SA)&&\trued&\true&&((getInput(theMac))) == (('c')));
ensures((theMac->currState == SC));

behavior behPouter_Pcomplete_SAunit:
assumes ((theMac->currState == SA)&&\trued&\true&&(! (((getInput(theMac))) == (('c')))) && (!\
(((getInput(theMac))) == (('b')))));
ensures((theMac->currState == SA));
disjoint behaviors;*/

void action_s@@(struct machine *theMac); 41

Proving Spec Simulates Implementation e

The C program interacts with its environment through memory
mapped IO

volatile uint8 t *fgetC = (uint8 t *)INPUT_ADDRESS;
int read packet(machine_t mac) {

uint8 t c = *fget(C;

mac->input = (char)c;

return ('a' <= c¢c & c <= 'z');

}

6/27/18

42
—

Sandia
National

Proving Spec Simulates Implementation s

so the implementer must relate the interface to the environment in
the abstraction to a memory mapped I/O interface in the
implementation of a given type

"interfaceRels": |
{
"abInt": {"ablInterfacelLabel”:"input"},
"impInt": {"impInterfaceVarPtr": {"typeNa\
1e”:"uint8 t", "instanceName®:"fgetC"}}
}
Il -

6/27/18 43
—

Sandia
National

Proving Spec Simulates Implementation s

Q generates the ACSL describing the corresponding terminal
abstraction lﬂ , and a short clang program searches through the
codebase for the declaratlon of a volatile variable of that name and
that type

volatile uint8_t *fgetC = (uint8_t *)INPUT_ADDRESS;
/*@ ghost //@ requires fgetCArg == fgetC;

uint8_t readfgetC(volatile uint8_t *fgetCArg) {
static uint8_t injectorfgetCBuffer[256];

static uint8_t injectorfgetCBufferCount

for (int i=0; i<256; i++){
injectorfgetCBuffer[il=i;

if (fgetC == fgetCArg)
return injectorfgetCBuffer[(injectorfgetCBufferCount++)%256"

[OEORONORENONONONORORORORS]
~

else
return 0;

7
//@ ghost uint8_t injectorfgetCCollector[256];
//@ ghost uint8_t fgetCCollectorCount = 0;
/*@ ghost //@ requires fgetCArg == fgetC;
@ uint8_t writefgetC(volatile uint8_t *fgetCArg, uint8_t v) {
e if (fgetCArg == fgetC)
@ return injectorfgetCCollector[(fgetCCollectorCount++)%25
6] = v;
else
return 0;

®®®

6/27/18

()=
National
Laboratories

Proving Spec Simulates Implementation

and defines a collection of ACSL predicates

predicate Pinner_unit(integer currState, integer nextState, struct machine * theMac) =(currState
= SA)&& (nextState == SA)&& \true&& \true&& ((!((!(((getInput(theMac))) == (('c')))) && (! (((get]
ut (theMac))) == (('b')))))) &k (!(((getInput(theMac))) == (('c'))))) && (! (((getInput(theMac))) -
(('b"))));

6/27/18 45
—

Sanda

Using the Q Compiler to Prove Spec Simulates e
Implementation

which form clauses in the transition relation

predicate theMacTransitionRelation(integer currState, integer nextState, machi®
ne_t theMac) = Pinner_unit(currState, nextState, theMac) || Pinner_unit_1(currSt®
ate, nextState, theMac) || Pinner_unit_2(currState, nextState, theMac) || Pouter'
_SA_SBunit(currState, nextState, theMac) || Pouter_SA SCunit(currState, nextStat'
e, theMac) || Pouter_Pcomplete_ SAunit(currState, nextState, theMac) || Pouter_SB®
_SAunit(currState, nextState, theMac) || Pouter_Pcomplete_ SBunit(currState, next'
State, theMac) || Pouter_SC SBunit(currState, nextState, theMac) || Pouter_Pcomp!
lete_SCunit(currState, nextState, theMac);

6/27/18 46

Sandia
National

Using the Q Compiler to Prove Spec Simulates s
Implementation

in the ABC example, the transition relation in this design is
implemented as an actual function on the executin environment

void step(machine_t mac) {
switch(mac->nextState) {
case SA: action_s00(mac); break;
case SB: action_s01(mac); break;
case SC: action_sll(mac); break;
default: error(); break;
}

}

and the implementer has related the abstract transition function to
this program point

"transitionFunction”: {"funcName":"step", "args":[\
{"typeName": "machine_t", "instanceName", "theMac"}]}

6/27/18 47
—

Using the Q Compiler to Prove Spec Simulates
Implementation

For any envocation of that function found within a while loop, the
clang program annotates with the corresponding loop invariant

int main() ¢

machine_t theMac = theMachine();

theMac->nextState = SA;

/*@

loop assigns *theMac; 1loop invariant theMacTransitionRelation(\
\at(theMac->currState, Pre), theMac->currState, theMac);*/
while(l) {

step(theMac)
}
return 0;

}

We then pose this invariant as a proof obligation to FramaC’s WP
plugin.

6/27/18

Sandia
National
Laboratories

Proving LTL properties about the Spec

The Q tool produces from the same abstraction a description of the
same transition system as a collection of LTL constraints, e.g. in

NuSMV

INIT

DEFINE

= (AA)));
= (BB)));
Pouter_SA_SB$unit := (st
Pouter SA_SC$unit := (st

& (! ((input) = (BB)));
Pouter_SB_SA$unit := (st

Pouter_#complete_SB$unit

Pouter_SC_SB$unit := (st

Pouter_#complete SC$unit :

6/27/18

Pouter_#complete_ SA$unit :

(st = SA) & (input in {AA, BB, CC,

EE}):

Pinner_unit := (st = SA) & (next(st) = SA) & ((!((!((input) = (CC))) & (!((in\]
put) = (BB))))) & (!((input) = (CC)))) & (!((input) = (BB)));

Pinner_unit_1 := (st = SB) & (next(st) = SB) & ((input) = (AA)) & (!((input) \

Pinner_unit_2 := (st = SC) & (next(st) = SC) & ((input) = (BB)) & (!((input) \

= SA) & (next(st) = SB) & (input) = (BB);

= SA) & (next(st) = SC) & (input) = (CC);

SA) & (next(st) = SA) & (!((input) = (CC)))\

= SB) & (next(st) = SA) & (input) = (AA);

= (on =

SB) & (next(st) = SB) & !((input) = (AA));

= SC) & (next(st) = SB) & (input) = (BB);

SC) & (next(st) = SC) & !((input) = (BB));

Sandia
National
Laboratories

Sandia
National

Proving LTL properties about the Spec s

Any proof obligations the designer may have posited

<!-- Global Properties to Satisfy -->
<!-- System exits SA only if input is b or c -->
<iumlb:pragma key="SMV_LTLN" value="Req001 := G((st=SA & (input!=BB & input!=CC)) -> X(st)

<!-- System exits SB only if input is a -->
<iumlb:pragma key="SMV_LTLN" value="Req002 := G((st=SB & input!=AA) -> X(st)=SB)" />

<!-- System exits SC only if input is b -->
<iumlb:pragma key="SMV_LTLN" value="Req003 := G((st=SC & input!=BB) -> X(st)=SC)" />

can be checked in NuSMV

LTLSPEC NAME
Req@01 := G((st=SA & (input!=BB & input!=CC)) -> X(st)=SA);

LTLSPEC NAME
Req@02 := G((st=SB & input!=AA) -> X(st)=SB);

LTLSPEC NAME
Req@03 := G((st=SC & input!=BB) -> X(st)=SC);

6/27/18 \What does that say about the imEIementation? 50

What have we proved?)

When FramaC’s WP plugin discharges these proof obligations, the
implementer’s simMap witnesses weak simulation

behavior behPouter_SA_SBunit:
assumes((theMac->currState == SA)&&\true&&\true&&
((theMac->input)) == (('b')));

tion
mac->curr:
tf("State A (Ox ", mac->currState);
(1 i_packet(mac)) {
03
}
(mac->input
mac->nextState = SB;

(mac->input 'e') {
mac->nextState = SC;

{
printf("Error on input: ", mac->input);
}

ensures((theMac->currState == SB));

6/27/18

Proving LTL Properties of Compositions with) .
Implementations

m So Q with FramaC proves weak simulation (in yellow) of the
implementation asynchronously composed with a volatile
environment by the asynchronous composition of the spec with
a volatile environment

F i
Input==a ==
Input==b l« P! Input==c
Input=za Input==b, Input==a
lpat =
Input==b
[
Abstract Controller ‘ Abstract Controller Abstract Component
Asynchronous composition Asynchronous composition
Q-Frama-C
Weak Simulation
Controller Component
C Implementation System Implementation
6/27/18 Controller || Volatile 52

Sandia
National

Proving LTL Properties of Compositions with s
Implementations

m Q with FramaC proves weak simulation (in yellow) of the
implementation composed with a volatile environment by the
asynchronous composition of the spec with the environment

m Q can generate models and LTL proof obigations for a
composition of abstractions (upper right hand corner)

Input==c

np
Abstract Controller Abstract Controller Abstract Component

Asynchronous composition Asynchronous composition

Q-Frama-C
Weak Simulation

Controller Component

Cimplementation System Implementation 53
6/27/18 Controller | | Volatile

Sandia
National
Laboratories

Proving LTL Properties of Compositions with
Implementations

m Q with FramaC proves weak simulation (in yellow) of the
implementation composed with a volatile environment by the
asynchronous composition of the spec with the environment

m Q can generate models and LTL proof obligations for a
composition of abstractions (upper right hand corner)

m What does that say about the implementation (lower right
corner)?

6/27/18

Sandia
National

The || between Boxes: Parallel Composition of LTS i

To reduce state space, and to model the composition of hardware
within clock domains, we actually have in Q a synchronous

composition
Definition
The Synchronous composition of P, @ : LTS, written P||Q is given by
the rule

@ / a /

pP—=pP g4
@ / /
(P,a) = pj (P',9")
6/27/18 55

Sandia
National

An example s

Example

Vq € SQ, the synchronous composition of these two LTS’s will never
visit (v10v21, q) or (v11v20, q)

6/27/18 56

Sandia
National

Moving Arrows past ||: Precongruence s

Our synchronous | was a convenient choice for reducing statespace
and for modeling hardware. More importantly, now, is that it is
compositional, in that

Lemma
Strong simulation < is a pre-congruence over |, that is,
VO,P,Q : LTS.P <Q = P|O < Q|0

6/27/18 57

Sandia
National
Laboratories

An Example

Example
Here, P, < @y, and Pi||Py < Q4[|

P, P,

6/27/18 Q 1 58

Sandia
National

Synchronous, Asynchronous, Strong, Weak s

We can recover asynchronous composition and weak simulation
through a completion with the right alphabet

Definition

Let A an alphabet, and let M , : LTS — LTS :: P = Pthe completion

over A be the transition system (SP, Ap| | A, —, SO) with the new
transition relation given by rules

(o3
p—pp ae A
a—P, — (2.1)
P —Myp P D =Myp P

(P) (P)

6/27/18 59

Sandia
National
Laboratories

Synchronous, Asynchronous, Strong, Weak

Let P, @ : LTS with alphabets A and A . We can recover the

asynchronous composition from the synchronous composition via the
completion once given a decomposition of their meet A, M A, into
disjoint A, | (labels output by F) and AOQ (labels output by Q)). Let

Aqpi= Ao, U (Ag \ Ap) the asynchronous alphabet of Q over P

6/27/18

Sandia
National
Laboratories

Synchronous, Asynchronous, Strong, Weak

Let P, @ : LTS with alphabets A and A . We can recover the

asynchronous composition from the synchronous composition via the
completion once given a decomposition of their meet A p N /lQ into
disjoint AOP (labels output by P) and AOQ (labels output by Q)). Let

Aqpi= Ao, U (Ag \ Ap) the asynchronous alphabet of Q over P
Proposition
Let Q, P : LTS share alphabet A p = A, and let A, the alphabet of

their environment. () weakly simulates P (i.e. P <y, Q) if and only if
P= MAE/Q(Q); orP — MAE/Q(Q)

6/27/18 60

Sandia
National
Laboratories

Synchronous, Asynchronous, Strong, Weak

Lemma
The asynchronous composition is in strong simulation’s kernel with

the synchronous composition of completions
VP,Q: LTS.P|"Q =M, (P)[M,, (Q)

6/27/18

Sandia
National
Laboratories

Synchronous, Asynchronous, Strong, Weak

Lemma

The asynchronous composition is in strong simulation’s kernel with
the synchronous composition of completions

VP,Q: LTS.P|'Q =M, _ (P)M,, (Q)

Lemma
PIM,, (14,) = P

6/27/18 61
—

Sandia
National

Synchronous, Asynchronous, Strong, Weak s

Lemma
The asynchronous composition is in strong simulation’s kernel with
the synchronous composition of completions

VP.Q: LTS.PI*Q =M, (P)[My, (@)

Lemma
P[M,, (1,) =P

Lemma
Q asks FramaC-WP to prove

qFramaC

MAQ/P<P”MAP/Q(1AQ>) A MAQ/P(C)HMAP/Q(l.AQ)

6/27/18 61

()=
National
Laboratories

Soundness and Compositionality of Q

!
m By terminality of the terminal abstraction, IAQ — Q.

6/27/18 62
—

Sandia
National

Soundness and Compositionality of Q s

!
m By terminality of the terminal abstraction, IAQ — Q.

m By functoriality of the completion,
ApP/Q

Mapo (1g,) < Mapo (Q)

6/27/18 62
—

Sandia
National

Soundness and Compositionality of Q s

!
m By terminality of the terminal abstraction, IAQ — Q.

m By functoriality of the completion,
ApP/Q

Mapo (1g,) < My, (@)
m Therefore, by precongruence of simulation (> or <) over |,

6/27/18 62
—

Soundness and Compositionality of Q e
!
m By terminality of the terminal abstraction, IAQ — Q.

m By functoriality of the completion,
ApP/Q

Mapo (1g,) < My, (@)
m Therefore, by precongruence of simulation (> or <) over |,

Theorem (Main Theorem)

The following is a commuting diagram of LTS with, as maps of LTS,
simulations

MAQ/P(!)
Mo (PIM, () <22 M, (P)IM,, (@)

Tq FramaC T

M./ZQ/P<C)”M./ZP/Q(1AQ) NI MAQ/p(C) ”MAP/Q (@)

6/27/18 62

Sandia
National

What Was Accomplished e

Weak simulation by

Controller precongruence Controller Component
Specification <] Mu(Specification MJ{ Specification
Q

Synchronous Q, it
acellel Compesition Synchronous Qpqrsjiel composition

)) Weak simulation
Weak Simulation by by precongruence

QFrama-C

<:I Controller Component

Weak simulation
by precongruence

C Implementation
Controller || Volatile
Environment

System Implementation

6/27/18 63

Sandia
National

What Was Accomplished s
Thus we have accomplished our goal -
m Given a proposed witness of simulation of a controller
implementation by its spec, the Q compiler generates and
emplaces the ACSL annotations from which FramaC generates
the proof of simulation.
Weak simulation by
o P N))
Weak simulation g’
Weak Simulation by by precongruence é’
QFrama-C '8
=
8
R Controller Component
Weak simulation
C Implementation by precongruence System Implementation
Controller | | Volatile
Environment
64

6/27/18

What Was Accomplished)

Thus we have accomplished our goal -

m Given a proposed witness of simulation of a controller
implementation by its spec, the Q compiler generates and
emplaces the ACSL annotations from which FramaC generates
the proof of simulation.

m The Q compiler computes the asynchronous composition of that
specification with specifications for other components and
constructs LTL models of the compositions along with high level
properties in e.g. Why3 if they are to be proved or e.g. NuSMV if
they are to be checked.

sanJadold Aiases

6/27/18

What Was Accomplished @) .
Thus we have accomplished our goal -

m Given a proposed witness of simulation of a controller
implementation by its spec, the Q compiler generates and
emplaces the ACSL annotations from which FramaC generates
the proof of simulation.

m The Q compiler computes the composition of that specification
with (the completion of the) specifications for other
components, constructs LTL models of the compositions along
with high level properties in e.g. Why3 if they are to be proved
or e.g. NuSMV if they are to be checked.

m By the Main Theorem, any Safety Properties proved about that
composition of specifications implies the same property about
the actual System implementation

6/27/18 o= 66

Sandia
National

What Was Accomplished e

Weak simulation by

Controller precongruence Controller
Spe n < 1 M;l(Specification

Component
M?l Specification

Synchronous Qp it
arallel Composition Synchronous Qprajiel composition $
Q
o
Weak simulation <
. . o
Weak Simulation by by precongruence 5]
Q, °
rama-C o
=
(0]
1%]

<:| Controller Component

Weak simulation
by precongruence

System Implementation

C Implementation
Controller || Volatile
Environment

6/27/18

What is Next for Q? s

m Qis currently proprietary. However, there is internal discussion
about potentially open sourcing it

m We would like to mechanize the metatheory: ideally Q would

provide certificates in, e.g. Coq, that it is doing the right thing.
For that it would be nice to have a formal semantics of ACSL.

6/27/18

Sandia
National

Thanks! e

Lt a ﬂ
T

g
Robert Armstrong ., Jon M. Aytac Geoffrey Compton Hulette Benjamin Curt Nilsen

Philip Alden Johnson-Freyd Jackson Mayo

Jason Michnovicz Karla Morris Ratish J. Punnoose =~ Andrew Michael Smith

6/27/18 69

Sandia
National

Bonus Slide: What about Aeorai s

m There is already a plugin for producing LTL properties about C
programs: Aeorai

6/27/18 20
—

Sandia
National

Bonus Slide: What about Aeorai s

m There is already a plugin for producing LTL properties about C
programs: Aeorai

m We could use this for our purposes only after solving the
following problem

6/27/18 70
—

Bonus Slide: What about Aeorai =

m There is already a plugin for producing LTL properties about C
programs: Aeorai

m We could use this for our purposes only after solving the
following problem

m LletPpjag : Prop(P|*(Q) a temporal property on the
asynchronous composition of Pand (). Given the specification
of @, what temporal property P : Prop(P) suffices to obtain
[PPHGQ. This is sometimes called the problem of producing
guotient specifications

6/27/18 70

Sandia

Bonus Slide: What about WPA? e

ptkNegotiating 3 1

nsg3AMICRecA-ReplayedMsg

unconditional

6/27/18 71

Sandia
National

Bonus Slide: Lattice Structure on Labels .

The labels in a C program will have some lattice structure, i.e. a
Boolean algebra of expressions over its variables, and this puts some
constraints on —: A — P(S x S),

B

« «
B=ap—cp p—p' p—=cp (2.2)
B aVvp 1 ,)
p—cp p—cop D—cp
6/27/18 72

Sandia
National

Bonus Slide: Lattice Structure on Labels .

The labels in a C program will have some lattice structure, i.e. a
Boolean algebra of expressions over its variables, and this puts some
constraints on —: A — P(S x S),

B

« «
B=ap—cp p—=p'p—cp
5 s — (2.2)
pP—cD p —cp p—cP

So — is a Galois Connection. [fir,,) must therefore be monotonic for
our witness to be viable.

6/27/18 72

Sandia
National

Bonus Slide: Lattice Structure on Labels .

m The labels in the abstraction are the expressions over abstract
variables Var, taking values in abstract value domain V.

6/27/18 73
—

Sandia
National

Bonus Slide: Lattice Structure on Labels .

m The labels in the abstraction are the expressions over abstract
variables Var, taking values in abstract value domain V.

m if f[RA] factors through a map of variables
Jvar : Varg — P(Varp) and a map of their value domains
fv: Vg = P(Vp), then we can know f , is monotonic, no
further proof obligations required.

6/27/18 73
—

Sandia
National
Laboratories

Bonus Slide: Lattice Structure on Labels

m The labels in the abstraction are the expressions over abstract
variables Var, taking values in abstract value domain V.

m if f[RA] factors through a map of variables
Jvar : Varg — P(Varp) and a map of their value domains
fv: Vg = P(Vp), then we can know f , is monotonic, no
further proof obligations required.

m Otherwise, checking monotonicity of f[RA] requires reasoning
about the lattice structure of the algebra of boolean expressions
over the execution environment of the C program

6/27/18 73

So we present the data type provide required to construct the -
simulation witness 12 as well as the information to generate 1, in @“’”mm
format encouraging the designer to give the witness without
incurring additional proof obligations
type simMap = {

stateRels: stateRelAtom list;

exprRels: exprRelAtom list;

inputRels: inputRelAtom list;

intVarRels: intVarRelAtom list;
valueRels: valueRelAtom list;

;ié@deriving yojson]

6/27/18

Sandia
National
Laboratories

Completion is not Strong

The completion is not, however, a strong endofunctor on LTS

My, o (PIMy, (@) = My, (P)M,, (Q)

6/27/18 75
—

	Motivation
	Workflow: Ovals and Arrows

