
The Q Compiler

for Verifying High-Consequence Controls

Jon Aytac

6/27/18

Sandia NaƟonal Laboratories is a mulƟmission laboratory managed and operated by NaƟonal Technology & Engineering SoluƟons of Sandia, LLC, a wholly owned subsidiary of
Honeywell InternaƟonal Inc., for the U.S. Department of Energy's NaƟonal Nuclear Security AdministraƟon under contract DE-NA0003525. SAND NO. TBD

MoƟvaƟon

Suppose you believe that

Designs of High Consequence Systems should come with formal

proofs of safety and reliability

Or, at least, Designers of High Consequence Systems should be

able to check whether their designs saƟsfy some safety and

reliability properƟes

So you give a presentaƟon to decision makers advocaƟng the

adopƟon of formal methodologies

They don’t have Ɵme to read everything, but they like to stay

abreast of what’s going on in the literature...

6/27/18 2

MoƟvaƟon

Suppose you believe that

Designs of High Consequence Systems should come with formal

proofs of safety and reliability

Or, at least, Designers of High Consequence Systems should be

able to check whether their designs saƟsfy some safety and

reliability properƟes

So you give a presentaƟon to decision makers advocaƟng the

adopƟon of formal methodologies

They don’t have Ɵme to read everything, but they like to stay

abreast of what’s going on in the literature...

6/27/18 2

MoƟvaƟon

Suppose you believe that

Designs of High Consequence Systems should come with formal

proofs of safety and reliability

Or, at least, Designers of High Consequence Systems should be

able to check whether their designs saƟsfy some safety and

reliability properƟes

So you give a presentaƟon to decision makers advocaƟng the

adopƟon of formal methodologies

They don’t have Ɵme to read everything, but they like to stay

abreast of what’s going on in the literature...

6/27/18 2

MoƟvaƟon

Suppose you believe that

Designs of High Consequence Systems should come with formal

proofs of safety and reliability

Or, at least, Designers of High Consequence Systems should be

able to check whether their designs saƟsfy some safety and

reliability properƟes

So you give a presentaƟon to decision makers advocaƟng the

adopƟon of formal methodologies

They don’t have Ɵme to read everything, but they like to stay

abreast of what’s going on in the literature...

6/27/18 2

Disaster!

and they show you this paper of Vanhoef and Piessens in 2017

which describes security vulnerabiliƟes in a protocol proven secure in

this paper of He et al in 2005

A Modular Correctness Proof of IEEE 802.11i and TLS

Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, John C. Mitchell
Electrical Engineering and Computer Science Departments,

Stanford University, Stanford, CA 94305-9045

ABSTRACT
The IEEE 802.11i wireless networking protocol provides mu-
tual authentication between a network access point and user
devices prior to user connectivity. The protocol consists of
several parts, including an 802.1X authentication phase us-
ing TLS over EAP, the 4-Way Handshake to establish a
fresh session key, and an optional Group Key Handshake
for group communications. Motivated by previous vulnera-
bilities in related wireless protocols and changes in 802.11i
to provide better security, we carry out a formal proof of
correctness using a Protocol Composition Logic previously
used for other protocols. The proof is modular, comprising
a separate proof for each protocol section and providing in-
sight into the networking environment in which each section
can be reliably used. Further, the proof holds for a variety
of failure recovery strategies and other implementation and
configuration options. Since SSL/TLS is widely used apart
from 802.11i, the security proof for SSL/TLS has indepen-
dent interest.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Security

Keywords: IEEE802.11i, TLS, Protocol Composition Logic

1. INTRODUCTION
Security is an obvious concern in many wireless networks,

because intruders can potentially access a network without
physically entering the buildings in which it is used. While
intended to provide security, the Wired Equivalent Privacy
(WEP) [1] protocol lacks good key management and suffers
from significant cryptographic problems [7], to the extent
that FBI agents have publicly demonstrated that they can
break a 128-bit WEP key in about three minutes [9]. For
these reasons, the IEEE Task Group i has developed the
802.11i Standard [2], ratified in June 2004, to provide con-
fidentiality, integrity, and mutual authentication. 802.11i
provides authentication protocols, key management proto-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

cols, and data confidentiality protocols that may execute
concurrently over a network in which other protocols are
also used.

In this paper, we present a formal correctness proof of the
802.11i protocols using Protocol Composition Logic (PCL) [17,
18, 11, 14, 12, 13, 25]. In previous work, PCL has been
proved sound for protocol runs that use any number of prin-
cipals and sessions, over both symbolic models and (for a
subset of the logic at present) over more traditional cryp-
tographic assumptions [10], which implies security for an
unbounded number of participants and sessions. Therefore,
while there are previous studies [20, 21] using finite-state
analysis to find errors in 802.11i with bounded configura-
tions, we believe that this is the first complete proof of
802.11i for an unbounded number of participants and ses-
sions. Furthermore, the formal proof for the TLS protocol
has independent interest since TLS is widely used indepen-
dent of 802.11i (e.g. [3]).

Our proof consists of separate proofs of specific security
properties for 802.11i components - the TLS authentication
phase, the 4-Way Handshake protocol and the Group Key
Handshake protocol. Using a new form of PCL composition
principle, formulated as staged composition in this paper,
we combine the component proofs to show that any staged
use of the protocol components achieves the stated security
goals. It follows that the components compose securely for
a range of failure recovery control flows, including the im-
provements proposed in [21]. The general result also proves
security for other configurations presented in the 802.11i
Standards document, including the use of a Pre-Shared Key
(PSK) or cached Pair-wise Master Key (PMK). In addition
to devising a new composition principle for PCL, we also
extend the logic to handle local memory associated with
reusing generated nonces. The memory feature is needed to
prove correctness of an unusual feature of the improved 4-
Way Handshake protocol [21] that involves reusing a nonce
to avoid a Denial of Service (DoS) attack.

An advantage of PCL is that each proof component identi-
fies not only the local reasoning that guarantees the security
goal of that component, but also the environmental condi-
tions that are needed to avoid destructive interference from
other protocols that may use the same certificates or key
materials. These environment assumptions are then proved
for the steps that require them, giving us an invariant that
is respected by the protocol. In formulating the proof, we
identify the precise conditions that will allow other protocols
to be executed in the same environment without interfering
with 802.11i. Moreover, our proof provides certain insights

6/27/18 3

Disaster!

He et al Proved Security ProperƟes for a ComposiƟon of Protocols ...

A Modular Correctness Proof of IEEE 802.11i and TLS

Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, John C. Mitchell
Electrical Engineering and Computer Science Departments,

Stanford University, Stanford, CA 94305-9045

ABSTRACT
The IEEE 802.11i wireless networking protocol provides mu-
tual authentication between a network access point and user
devices prior to user connectivity. The protocol consists of
several parts, including an 802.1X authentication phase us-
ing TLS over EAP, the 4-Way Handshake to establish a
fresh session key, and an optional Group Key Handshake
for group communications. Motivated by previous vulnera-
bilities in related wireless protocols and changes in 802.11i
to provide better security, we carry out a formal proof of
correctness using a Protocol Composition Logic previously
used for other protocols. The proof is modular, comprising
a separate proof for each protocol section and providing in-
sight into the networking environment in which each section
can be reliably used. Further, the proof holds for a variety
of failure recovery strategies and other implementation and
configuration options. Since SSL/TLS is widely used apart
from 802.11i, the security proof for SSL/TLS has indepen-
dent interest.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Security

Keywords: IEEE802.11i, TLS, Protocol Composition Logic

1. INTRODUCTION
Security is an obvious concern in many wireless networks,

because intruders can potentially access a network without
physically entering the buildings in which it is used. While
intended to provide security, the Wired Equivalent Privacy
(WEP) [1] protocol lacks good key management and suffers
from significant cryptographic problems [7], to the extent
that FBI agents have publicly demonstrated that they can
break a 128-bit WEP key in about three minutes [9]. For
these reasons, the IEEE Task Group i has developed the
802.11i Standard [2], ratified in June 2004, to provide con-
fidentiality, integrity, and mutual authentication. 802.11i
provides authentication protocols, key management proto-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

cols, and data confidentiality protocols that may execute
concurrently over a network in which other protocols are
also used.

In this paper, we present a formal correctness proof of the
802.11i protocols using Protocol Composition Logic (PCL) [17,
18, 11, 14, 12, 13, 25]. In previous work, PCL has been
proved sound for protocol runs that use any number of prin-
cipals and sessions, over both symbolic models and (for a
subset of the logic at present) over more traditional cryp-
tographic assumptions [10], which implies security for an
unbounded number of participants and sessions. Therefore,
while there are previous studies [20, 21] using finite-state
analysis to find errors in 802.11i with bounded configura-
tions, we believe that this is the first complete proof of
802.11i for an unbounded number of participants and ses-
sions. Furthermore, the formal proof for the TLS protocol
has independent interest since TLS is widely used indepen-
dent of 802.11i (e.g. [3]).

Our proof consists of separate proofs of specific security
properties for 802.11i components - the TLS authentication
phase, the 4-Way Handshake protocol and the Group Key
Handshake protocol. Using a new form of PCL composition
principle, formulated as staged composition in this paper,
we combine the component proofs to show that any staged
use of the protocol components achieves the stated security
goals. It follows that the components compose securely for
a range of failure recovery control flows, including the im-
provements proposed in [21]. The general result also proves
security for other configurations presented in the 802.11i
Standards document, including the use of a Pre-Shared Key
(PSK) or cached Pair-wise Master Key (PMK). In addition
to devising a new composition principle for PCL, we also
extend the logic to handle local memory associated with
reusing generated nonces. The memory feature is needed to
prove correctness of an unusual feature of the improved 4-
Way Handshake protocol [21] that involves reusing a nonce
to avoid a Denial of Service (DoS) attack.

An advantage of PCL is that each proof component identi-
fies not only the local reasoning that guarantees the security
goal of that component, but also the environmental condi-
tions that are needed to avoid destructive interference from
other protocols that may use the same certificates or key
materials. These environment assumptions are then proved
for the steps that require them, giving us an invariant that
is respected by the protocol. In formulating the proof, we
identify the precise conditions that will allow other protocols
to be executed in the same environment without interfering
with 802.11i. Moreover, our proof provides certain insights

He et al

6/27/18 4

Disaster!

... The AƩack didn’t Violate Those ProperƟes ...

Vanhoef and Piessens

6/27/18 5

Disaster!

... The Crucial ProperƟes Were Temporal...

Vanhoef and Piessens

6/27/18 6

Disaster

... and the 802.11i amendment didn’t specify the protocols in such a

way that quesƟons about temporal properƟes could even be posed ...

Vanhoef and Piessens

6/27/18 7

... Worse yet, the Map isn’t the Territory

Vanhoef and Piessens

6/27/18 8

... Vanhoef and Piessens Proved CounterMeasure

Correctness in NuSMV...

Vanhoef and Piessens

6/27/18 9

Jedi Mind Trick

So then the decision makers say

We need a language for the specificaƟon of temporal behavior,

preferably one designers would actually use

We need to compile these descripƟons into languages suitable

for proving (e.g. Why3) and checking (e.g. NuSMV) temporal

properƟes about composiƟons of specificaƟons

For scalability’s sake, the compiler should allow composiƟonal

reasoning about systems

We need to prove those properƟes descend to implementaƟons

6/27/18 10

Jedi Mind Trick

So then the decision makers say

We need a language for the specificaƟon of temporal behavior,

preferably one designers would actually use

We need to compile these descripƟons into languages suitable

for proving (e.g. Why3) and checking (e.g. NuSMV) temporal

properƟes about composiƟons of specificaƟons

For scalability’s sake, the compiler should allow composiƟonal

reasoning about systems

We need to prove those properƟes descend to implementaƟons

6/27/18 10

Jedi Mind Trick

So then the decision makers say

We need a language for the specificaƟon of temporal behavior,

preferably one designers would actually use

We need to compile these descripƟons into languages suitable

for proving (e.g. Why3) and checking (e.g. NuSMV) temporal

properƟes about composiƟons of specificaƟons

For scalability’s sake, the compiler should allow composiƟonal

reasoning about systems

We need to prove those properƟes descend to implementaƟons

6/27/18 10

Jedi Mind Trick

So then the decision makers say

We need a language for the specificaƟon of temporal behavior,

preferably one designers would actually use

We need to compile these descripƟons into languages suitable

for proving (e.g. Why3) and checking (e.g. NuSMV) temporal

properƟes about composiƟons of specificaƟons

For scalability’s sake, the compiler should allow composiƟonal

reasoning about systems

We need to prove those properƟes descend to implementaƟons

6/27/18 10

Jedi Mind Trick

So then the decision makers say

We need a language for the specificaƟon of temporal behavior,

preferably one designers would actually use

We need to compile these descripƟons into languages suitable

for proving (e.g. Why3) and checking (e.g. NuSMV) temporal

properƟes about composiƟons of specificaƟons

For scalability’s sake, the compiler should allow composiƟonal

reasoning about systems

We need to prove those properƟes descend to implementaƟons

6/27/18 10

What a Coincidence

At this point, you say, we just so happen to have already wriƩen a

tool, the 𝑄 compiler, to do just that!

6/27/18 11

Q Compiler

Designers draw statechart-like diagrams in their specificaƟons, so 𝑄
captures these in a statechart-like formal language

and compiles them into a mulƟtude of languages. We focus here on

how 𝑄 compiles into ACSL and SMV to enable a workflow with

FramaC and NuSMV.

6/27/18 12

WorkFlow: Boxes and Arrows

Controller
Specification

Controller Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

qqParallel Composition
Refinement by Construction

qqFrama-C
Proves Refinement

Component

System Implementation

Controller

Input

Output
CParallel Composition

Refinement by Construction

Parallel Composition

Controller
Specification

Component
Specification

The designer writes abstract spec-

ificaƟons for the controller and

the component in a Statechart-like

language, along with system level

properƟes about their composiƟon

6/27/18 13

WorkFlow: Boxes and Arrows

Component

System Implementation

Controller

Input

Output

Parallel Composition

Controller
Specification

Component
Specification Prop(Controller

Specification
Component
Specification)

𝑄 then generates an LTL model of the composiƟon of abstract

specificaƟons along with the system level properƟes. These

properƟes may now be checked with model checking tools like

NuSMV

6/27/18 14

WorkFlow: Boxes and Arrows

Controller
Specification

Controller Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

qqParallel Composition
Refinement by Construction

qqFrama-C
Proves Refinement

Component

System Implementation

Controller

Input

Output
CParallel Composition

Refinement by Construction

Parallel Composition

Controller
Specification

Component
Specification

The Engineers then implement the

controller in C

6/27/18 15

WorkFlow: Boxes and Arrows

Controller
Specification

Controller Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

qqParallel Composition
Refinement by Construction

qqFrama-C
Proves Refinement

Component

System Implementation

Controller

Input

Output
CParallel Composition

Refinement by Construction

Parallel Composition

Controller
Specification

Component
Specification

The Engineers need to present

some kind of evidence that the

specified system abstracts the sys-

tem implementaƟon

6/27/18 16

WorkFlow: Boxes and Arrows

Component

System Implementation

Controller

Input

Output

Parallel Composition

Controller
Specification

Component
Specification Prop(Controller

Specification
Component
Specification)

Prop(Component

System Implementation

Controller

Input

Output

)

W
ea

k
si

m
ul

at
io

n

In parƟcular, the evidence of ab-

stracƟon must be sufficient for

proofs of properƟes about the ab-

stract system to imply proofs of

those properƟes about the system

implementaƟon

6/27/18 17

WorkFlow: Boxes and Arrows

Component

System Implementation

Controller

Input

Output

Parallel Composition

Controller
Specification

Component
Specification Propsafety(Controller

Specification
Component
Specification)

Propsafety(Component

System Implementation

Controller

Input

Output

)

W
ea

k
si

m
ul

at
io

n

In our context, we are allowed to

focus on stuƩering invariant safety

properƟes

6/27/18 18

WorkFlow: Boxes and Arrows

Component

System Implementation

Controller

Input

Output

Parallel Composition

Controller
Specification

Component
Specification Propsafety(Controller

Specification
Component
Specification)

Propsafety(Component

System Implementation

Controller

Input

Output

)

W
ea

k
si

m
u

la
ti

o
n

The engineer must therefore

present evidence that the com-

posiƟon of specificaƟons weakly

simulates the composiƟon of

implementaƟons

6/27/18 19

WorkFlow: Boxes and Arrows

Component

System Implementation

Controller

Input

Output

Parallel Composition

Controller
Specification

Component
Specification Propsafety(Controller

Specification
Component
Specification)

Propsafety(Component

System Implementation

Controller

Input

Output

)

W
ea

k
sim

ul
at

io
n

Only Frama-C meets our require-

ments for reasoning about C pro-

grams, but Frama-C analyzes se-

quenƟal programs. Fortunately,

our C program interacts with com-

ponents through memory mapped

I/O

6/27/18 20

WorkFlow: Boxes and Arrows

Abstraction
By

precongruence

Controller
Specification

Controller Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

qqParallel Composition
Abstraction by
precongruence

qqFrama-C
Proves Abstraction

Component

System Implementation

Controller

Input

Output
CParallel Composition

Abstraction by
precongruence

Parallel Composition

Controller
Specification

Component
Specification

Volatile
component So we ask the engineer to present

evidence from which 𝑄 can con-

struct , in ACSL, a proof obliga-

Ɵon that the composiƟon of the ab-

stract controller specificaƟon with

a volaƟle environment weakly sim-

ulates the composiƟon of the im-

plementaƟon with a volaƟle envi-

ronment

6/27/18 21

Workflow: Boxes and Arrows

The proof of this yellow, weak simulaƟon arrow is discharged by

Frama-C’s Weakest PrecondiƟon plugin. The trick is to obtain the

blue arrows by construcƟon. Then proof of the yellow arrow gives us

our goal, the right column, for free

Controller
Specification

Controller Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

Component

System Implementation

Controller

Input

Output

Parallel Composition

Controller
Specification

Component
Specification

Volatile
component

6/27/18 22

The Boxes are StateChart-like

The designer writes in a Statechart-like language, by which we mean

a specificaƟon language for reacƟve programs,inducƟvely defined

through hierarchic and parallel composiƟon of transiƟon systems.

6/27/18 23

The Boxes: LTS

A labelled transiƟon system 𝑃 ∶ LTS is a tuple (𝑆𝑃, 𝒜𝑃,
⋅

→𝑃, 𝑃0), with
𝑆𝑃 the set of states, 𝒜𝑃 an alphabet, the transiƟon relaƟon

⋅
→𝑃∶ 𝒜𝑃 → 𝒫(𝑆𝑃 × 𝑆𝑃) a map from alphabet to relaƟons on states,

and 𝑃0 a set of iniƟal states

6/27/18 24

The Boxes: C Programs as LTS

Example

a program point and an execuƟon environment (which maps

variables to values) together consƟtute the program state of a C

program.

The program is given by the data of a map from program points

to commands

Given a program state, the evaluaƟon of the command found at

that program state’s program point defines a transiƟon to new

program state.

The label of that transiƟon is some predicate on the execuƟon

environment.

In this way, we can think about C programs as labelled transiƟon

systems.

6/27/18 25

The Boxes: C Programs as LTS

Example

a program point and an execuƟon environment (which maps

variables to values) together consƟtute the program state of a C

program.

The program is given by the data of a map from program points

to commands

Given a program state, the evaluaƟon of the command found at

that program state’s program point defines a transiƟon to new

program state.

The label of that transiƟon is some predicate on the execuƟon

environment.

In this way, we can think about C programs as labelled transiƟon

systems.

6/27/18 25

The Boxes: C Programs as LTS

Example

a program point and an execuƟon environment (which maps

variables to values) together consƟtute the program state of a C

program.

The program is given by the data of a map from program points

to commands

Given a program state, the evaluaƟon of the command found at

that program state’s program point defines a transiƟon to new

program state.

The label of that transiƟon is some predicate on the execuƟon

environment.

In this way, we can think about C programs as labelled transiƟon

systems.

6/27/18 25

The Boxes: C Programs as LTS

Example

a program point and an execuƟon environment (which maps

variables to values) together consƟtute the program state of a C

program.

The program is given by the data of a map from program points

to commands

Given a program state, the evaluaƟon of the command found at

that program state’s program point defines a transiƟon to new

program state.

The label of that transiƟon is some predicate on the execuƟon

environment.

In this way, we can think about C programs as labelled transiƟon

systems.

6/27/18 25

The Boxes: C Programs as LTS

Example

a program point and an execuƟon environment (which maps

variables to values) together consƟtute the program state of a C

program.

The program is given by the data of a map from program points

to commands

Given a program state, the evaluaƟon of the command found at

that program state’s program point defines a transiƟon to new

program state.

The label of that transiƟon is some predicate on the execuƟon

environment.

In this way, we can think about C programs as labelled transiƟon

systems.
6/27/18 25

The Arrows: SimulaƟon RelaƟons

DefiniƟon

For any 𝑃 , 𝑄 ∶ LTS with 𝒜𝑃 = 𝒜𝑄, a relaƟon 𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄 is a

simulaƟon relaƟon if and only if ∀(𝑝, 𝑞) ∈ 𝑅, 𝛼 ∈ 𝒜𝑃, 𝑝′ ∈ 𝑆𝑃

𝑝
𝛼

→𝑃 𝑝′ ⇒ ∃𝑞′ ∈ 𝑆𝑄 ∶ (𝑞
𝛼

→𝑄 𝑞′ ∧ (𝑝′, 𝑞′) ∈ 𝑅)

𝑄 simulates 𝑃, wriƩen 𝑃 ⪯ 𝑄 or 𝑃 → 𝑄, if 𝑃0 ⊂ 𝑅−1(𝑄0).

The relaƟon 𝑅 is said to be a witness for 𝑃 ⪯ 𝑄, and 𝑄 is said

to be an abstracƟon of 𝑃. When the witness is a funcƟon, the

simulaƟon relaƟon is said to be a refinement.

6/27/18 26

The Arrows: SimulaƟon RelaƟons

DefiniƟon

For any 𝑃 , 𝑄 ∶ LTS with 𝒜𝑃 = 𝒜𝑄, a relaƟon 𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄 is a

simulaƟon relaƟon if and only if ∀(𝑝, 𝑞) ∈ 𝑅, 𝛼 ∈ 𝒜𝑃, 𝑝′ ∈ 𝑆𝑃

𝑝
𝛼

→𝑃 𝑝′ ⇒ ∃𝑞′ ∈ 𝑆𝑄 ∶ (𝑞
𝛼

→𝑄 𝑞′ ∧ (𝑝′, 𝑞′) ∈ 𝑅)

𝑄 simulates 𝑃, wriƩen 𝑃 ⪯ 𝑄 or 𝑃 → 𝑄, if 𝑃0 ⊂ 𝑅−1(𝑄0).
The relaƟon 𝑅 is said to be a witness for 𝑃 ⪯ 𝑄, and 𝑄 is said

to be an abstracƟon of 𝑃. When the witness is a funcƟon, the

simulaƟon relaƟon is said to be a refinement.

6/27/18 26

The Arrows: SimulaƟon RelaƟons

ProposiƟon

This preorder is sound in that 𝑃 ⪯ 𝑄 ⇒ trace(𝑃) ⊆ trace(𝑄). So, if
𝑃 ⪯ 𝑄, then for any ℙ𝑄 ∶ Prop(𝑄) temporal property on 𝑄 and

ℙ𝑃 ∶ Prop(𝑃) the corresponding temporal property on 𝑃, ℙ𝑄 ⇒ ℙ𝑃.

6/27/18 27

An Example

Example

Here, 𝑃1 ⪯ 𝑄1

𝑃1

_

p10

p11

a

𝑄1

_

q10

q11

b

q12

a

6/27/18 28

Memory Mapped I/O, VolaƟle Variables and the Terminal

AbstracƟon

DefiniƟon

The terminal abstracƟon over the alphabet 𝒜 is the labeled transiƟon

system 1𝒜0
= (⋆, 𝒜, →1𝒜

, ⋆) with ∀𝛼 ∈ 𝒜. →𝒜∶ 𝛼 → ⋆ × ⋆.

ProposiƟon

The terminal abstracƟon over a given alphabet abstracts any

machine of the same alphabet ∀𝑃 = (𝑆𝑃, 𝒜𝑃,
⋅

→𝑃, 𝑃0) , 𝑃 ⪯ 1𝒜𝑃

6/27/18 29

Memory Mapped I/O, VolaƟle Variables and the Terminal

AbstracƟon

DefiniƟon

The terminal abstracƟon over the alphabet 𝒜 is the labeled transiƟon

system 1𝒜0
= (⋆, 𝒜, →1𝒜

, ⋆) with ∀𝛼 ∈ 𝒜. →𝒜∶ 𝛼 → ⋆ × ⋆.

ProposiƟon

The terminal abstracƟon over a given alphabet abstracts any

machine of the same alphabet ∀𝑃 = (𝑆𝑃, 𝒜𝑃,
⋅

→𝑃, 𝑃0) , 𝑃 ⪯ 1𝒜𝑃

6/27/18 29

Memory Mapped I/O and the Terminal AbstracƟon

Example

Let “volaƟle uint8_t ⋆I;” a declaraƟon of a reference to a volaƟle

variable of type uint8_t. Then,

𝒜𝐼 = {(⋆𝐼 == 0), ⋯ , (⋆𝐼 == 255)}, and the presence of a volaƟle

variable in a 𝐶 program is an asynchronous parallel composiƟon with

1𝒜𝐼
, which we’ll write as, 𝐶‖𝑎1𝒜𝐼

6/27/18 30

Proving Spec Simulates ImplementaƟon

So we will use the Q compiler and FramaC to prove

Input==a

Input==c

Input==b

Input==b
SA

SB

SC
Abstract Controller

Controller
Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

Input==b

Input==b

Input==c

compS1
compS2

compS3
Input==a

Parallel Composition

qqParallel Composition
qqFrama-C

Proves
Weak Simulation

Component

System Implementation

Controller

Input

Output
CParallel Composition

Input==a

Input==c

Input==b

Input==b
SA

SB

SC

Abstract Controller Abstract Component

*

In
pu

t =
=c Input == b

Input == a

a a

6/27/18 31

Proving Spec Simulates ImplementaƟon

So the designer gives a formal specificaƟon of their design in our

statechart-like language, e.g. the ABC example

𝐴
𝑏

��

𝑐

��

𝐶
𝑏

GG

𝐵
𝑎

WW

The implementer of the C program should give a witness that their

program is simulated by this abstract transiƟon system.

6/27/18 32

Proving Spec Simulates ImplementaƟon

A witness that 𝑄 simulates 𝑃 (𝑃 ⪯ 𝑄 or 𝑃 → 𝑄) decomposes into a

relaƟon on labels 𝑅𝒜 and a relaƟon on the states 𝑅𝒮

𝒜𝑃

𝑓[𝑅𝒜]

��

⋅
→𝑃 // 𝒫(𝑆𝑃 × 𝑆𝑃)

𝑓[𝑅𝒮]

��

𝒜𝑄

⋅
→𝑄

// 𝒫(𝑆𝑄 × 𝑆𝑄)

such that 𝑓[𝑅𝒜]∘
⋅

→𝑃⊆
⋅

→𝑄 ∘𝑓[𝑅𝒜].

6/27/18 33

Proving Spec Simulates ImplementaƟon

For C programs thought of as LTS, the labels are expressions

over the execuƟon environment.

so 𝑅𝒜 may be given by a relaƟon on internal variables, a

relaƟon on values, and a relaƟon on inputs,

So the implementer proposes 𝑅𝒜 and 𝑅𝒮 via a JSON file

described by the OCaml simMap type below

6/27/18 34

Proving Spec Simulates ImplementaƟon

For C programs thought of as LTS, the labels are expressions

over the execuƟon environment.

so 𝑅𝒜 may be given by a relaƟon on internal variables, a

relaƟon on values, and a relaƟon on inputs,

So the implementer proposes 𝑅𝒜 and 𝑅𝒮 via a JSON file

described by the OCaml simMap type below

6/27/18 34

Proving Spec Simulates ImplementaƟon

For C programs thought of as LTS, the labels are expressions

over the execuƟon environment.

so 𝑅𝒜 may be given by a relaƟon on internal variables, a

relaƟon on values, and a relaƟon on inputs,

So the implementer proposes 𝑅𝒜 and 𝑅𝒮 via a JSON file

described by the OCaml simMap type below

6/27/18 34

Proving Spec Simulates ImplementaƟon

𝑅𝑆 should be pairs of program states in the abstract and concrete

program. For our simple ABC example, the relevant execuƟon

context is held by a type

6/27/18 35

Proving Spec Simulates ImplementaƟon

In the ABC example, the parƟcular instance of the type carrying the

execuƟon environment part of the program state is declared in the C

as

so the implementer specifies this in the JSON as

6/27/18 36

Proving Spec Simulates ImplementaƟon

In the ABC example, the iniƟal and final program states in the

abstracƟon correspond in the C program to the entry and exit

program points given the execuƟon environment

6/27/18 37

Proving Spec Simulates ImplementaƟon

So the implementer gives the relaƟon on states as

6/27/18 38

Proving Spec Simulates ImplementaƟon

there being, in this example, no internal variables, the map on

alphabets factors through a map on input variables

6/27/18 39

Proving Spec Simulates ImplementaƟon

and values

6/27/18 40

Proving Spec Simulates ImplementaƟon

Q then generates the ACSL annotaƟons posiƟng the pre and post

condiƟons from the specificaƟon and the simulaƟon relaƟon. A short

clang program searches through the C implementaƟon’s code base

for the program points specified by the stateRel and annotates:

6/27/18 41

Proving Spec Simulates ImplementaƟon

The C program interacts with its environment through memory

mapped IO

6/27/18 42

Proving Spec Simulates ImplementaƟon

so the implementer must relate the interface to the environment in

the abstracƟon to a memory mapped I/O interface in the

implementaƟon of a given type

6/27/18 43

Proving Spec Simulates ImplementaƟon

Q generates the ACSL describing the corresponding terminal

abstracƟon 1𝒜𝑓𝑔𝑒𝑡𝑐
, and a short clang program searches through the

codebase for the declaraƟon of a volaƟle variable of that name and

that type

6/27/18 44

Proving Spec Simulates ImplementaƟon

and defines a collecƟon of ACSL predicates

6/27/18 45

Using the Q Compiler to Prove Spec Simulates

ImplementaƟon

which form clauses in the transiƟon relaƟon

6/27/18 46

Using the Q Compiler to Prove Spec Simulates

ImplementaƟon

in the ABC example, the transiƟon relaƟon in this design is

implemented as an actual funcƟon on the execuƟn environment

and the implementer has related the abstract transiƟon funcƟon to

this program point

6/27/18 47

Using the Q Compiler to Prove Spec Simulates

ImplementaƟon

For any envocaƟon of that funcƟon found within a while loop, the

clang program annotates with the corresponding loop invariant

We then pose this invariant as a proof obligaƟon to FramaC’s WP

plugin.

6/27/18 48

Proving LTL properƟes about the Spec

The Q tool produces from the same abstracƟon a descripƟon of the

same transiƟon system as a collecƟon of LTL constraints, e.g. in

NuSMV

6/27/18 49

Proving LTL properƟes about the Spec

Any proof obligaƟons the designer may have posited

can be checked in NuSMV

What does that say about the implementaƟon?6/27/18 50

What have we proved?

When FramaC’s WP plugin discharges these proof obligaƟons, the

implementer’s simMap witnesses weak simulaƟon

Proving WcuContracts WcuRefact-C

ACSL C

Official Use Only

6/27/18 51

Proving LTL ProperƟes of ComposiƟons with

ImplementaƟons

So Q with FramaC proves weak simulaƟon (in yellow) of the

implementaƟon asynchronously composed with a volaƟle

environment by the asynchronous composiƟon of the spec with

a volaƟle environment

Input==a

Input==c

Input==b

Input==b
SA

SB

SC
Abstract Controller

Controller
Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

Input==b

Input==b

Input==c

compS1
compS2

compS3
Input==a

Asynchronous composition

Q-Frama-C
Weak Simulation

Component

System Implementation

Controller

Input

Output

Input==a

Input==c

Input==b

Input==b
SA

SB

SC

Abstract Controller Abstract Component

*

Input ==c

Input==b

Input==a

Asynchronous composition

a a

6/27/18 52

Proving LTL ProperƟes of ComposiƟons with

ImplementaƟons

Q with FramaC proves weak simulaƟon (in yellow) of the

implementaƟon composed with a volaƟle environment by the

asynchronous composiƟon of the spec with the environment

Q can generate models and LTL proof obigaƟons for a

composiƟon of abstracƟons (upper right hand corner)

Input==a

Input==c

Input==b

Input==b
SA

SB

SC
Abstract Controller

Controller
Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

Input==b

Input==b

Input==c

compS1
compS2

compS3
Input==a

Asynchronous composition

Q-Frama-C
Weak Simulation

Component

System Implementation

Controller

Input

Output

Input==a

Input==c

Input==b

Input==b
SA

SB

SC

Abstract Controller Abstract Component

*

Input ==c

Input==b

Input==a

Asynchronous composition

a a

6/27/18 53

Proving LTL ProperƟes of ComposiƟons with

ImplementaƟons

Q with FramaC proves weak simulaƟon (in yellow) of the

implementaƟon composed with a volaƟle environment by the

asynchronous composiƟon of the spec with the environment

Q can generate models and LTL proof obligaƟons for a

composiƟon of abstracƟons (upper right hand corner)

What does that say about the implementaƟon (lower right

corner)?

Input==a

Input==c

Input==b

Input==b
SA

SB

SC
Abstract Controller

Controller
Volatile
Environment

Input

Output

C Implementation
Controller || Volatile

Environment

Input==b

Input==b

Input==c

compS1
compS2

compS3
Input==a

Asynchronous composition

Q-Frama-C
Weak Simulation

Component

System Implementation

Controller

Input

Output

Input==a

Input==c

Input==b

Input==b
SA

SB

SC

Abstract Controller Abstract Component

*

Input ==c

Input==b

Input==a

Asynchronous composition

a a

6/27/18 54

The ‖ between Boxes: Parallel ComposiƟon of LTS

To reduce state space, and to model the composiƟon of hardware

within clock domains, we actually have in Q a synchronous

composiƟon

DefiniƟon

The Synchronous composiƟon of 𝑃 , 𝑄 ∶ LTS, wriƩen 𝑃‖𝑄 is given by

the rule

𝑝
𝛼

→𝑃 𝑝′ 𝑞
𝛼

→𝑄 𝑞′

(𝑝, 𝑞)
𝛼

→𝑃‖𝑄 (𝑝′, 𝑞′)

6/27/18 55

An example

Example

∀𝑞 ∈ 𝑆𝑄, the synchronous composiƟon of these two LTS’s will never

visit (𝑣10𝑣21, 𝑞) or (𝑣11𝑣20, 𝑞)

_

0 get/\(v==0)

1

set==1

get/\(v==1)
v10

v10v20

get/\(v==0)

v10v21

get/\(v==1)

v11

v11v20

get/\(v==0)

v11v21

get/\(v==1)

_

C0

Set

set==1

get/\(v==0) get/\(v==1)

6/27/18 56

Moving Arrows past ‖: Precongruence

Our synchronous ‖ was a convenient choice for reducing statespace
and for modeling hardware. More importantly, now, is that it is

composiƟonal, in that

Lemma

Strong simulaƟon ⪯ is a pre-congruence over ‖, that is,
∀𝑂, 𝑃 , 𝑄 ∶ LTS.𝑃 ⪯ 𝑄 ⇒ 𝑃 ‖𝑂 ⪯ 𝑄‖𝑂

6/27/18 57

An Example

Example

Here, 𝑃1 ⪯ 𝑄1, and 𝑃1‖𝑃2 ⪯ 𝑄1‖𝑃2

𝑃1

_

p10

p11

a

𝑄1

_

q10

q11

b

q12

a

𝑃2

_

p20

p21

b

b

6/27/18 58

Synchronous, Asynchronous, Strong, Weak

We can recover asynchronous composiƟon and weak simulaƟon

through a compleƟon with the right alphabet

DefiniƟon

Let 𝒜 an alphabet, and let 𝑀𝒜 ∶ LTS → LTS ∶∶ 𝑃 ↦ 𝑃 the compleƟon

over 𝒜 be the transiƟon system (𝑆𝑃, 𝒜𝑃 ⨆ 𝒜,
⋅

→, 𝑆0) with the new

transiƟon relaƟon given by rules

𝑝
𝛼

→𝑃 𝑝′

𝑝
𝛼
→M𝒜(𝑃)

𝑝′

𝛼 ∈ 𝒜
𝑝

𝛼
→M𝒜(𝑃)

𝑝
(2.1)

6/27/18 59

Synchronous, Asynchronous, Strong, Weak

Let 𝑃 , 𝑄 ∶ LTS with alphabets 𝒜𝑃 and 𝒜𝑄. We can recover the

asynchronous composiƟon from the synchronous composiƟon via the

compleƟon once given a decomposiƟon of their meet 𝒜𝑃 ⊓ 𝒜𝑄 into

disjoint 𝒜𝑂𝑃
(labels output by 𝑃) and 𝒜𝑂𝑄

(labels output by 𝑄). Let

𝒜𝑄/𝑃 ∶= 𝒜𝑂𝑄
⊔ (𝒜𝑄 \ 𝒜𝑃) the asynchronous alphabet of 𝑄 over 𝑃

ProposiƟon

Let 𝑄, 𝑃 ∶ LTS share alphabet 𝒜𝑃 = 𝒜𝑄 and let 𝒜𝐸 the alphabet of

their environment. 𝑄 weakly simulates 𝑃 (i.e. 𝑃 ⪯𝑊 𝑄) if and only if

𝑃 ⪯ M𝒜𝐸/𝑄
(𝑄), or 𝑃 → M𝒜𝐸/𝑄

(𝑄)

6/27/18 60

Synchronous, Asynchronous, Strong, Weak

Let 𝑃 , 𝑄 ∶ LTS with alphabets 𝒜𝑃 and 𝒜𝑄. We can recover the

asynchronous composiƟon from the synchronous composiƟon via the

compleƟon once given a decomposiƟon of their meet 𝒜𝑃 ⊓ 𝒜𝑄 into

disjoint 𝒜𝑂𝑃
(labels output by 𝑃) and 𝒜𝑂𝑄

(labels output by 𝑄). Let

𝒜𝑄/𝑃 ∶= 𝒜𝑂𝑄
⊔ (𝒜𝑄 \ 𝒜𝑃) the asynchronous alphabet of 𝑄 over 𝑃

ProposiƟon

Let 𝑄, 𝑃 ∶ LTS share alphabet 𝒜𝑃 = 𝒜𝑄 and let 𝒜𝐸 the alphabet of

their environment. 𝑄 weakly simulates 𝑃 (i.e. 𝑃 ⪯𝑊 𝑄) if and only if

𝑃 ⪯ M𝒜𝐸/𝑄
(𝑄), or 𝑃 → M𝒜𝐸/𝑄

(𝑄)

6/27/18 60

Synchronous, Asynchronous, Strong, Weak

Lemma

The asynchronous composiƟon is in strong simulaƟon’s kernel with

the synchronous composiƟon of compleƟons

∀𝑃 , 𝑄 ∶ 𝐿𝑇 𝑆.𝑃‖𝑎𝑄 ≃ M𝒜𝑄/𝑃
(𝑃)‖M𝒜𝑃/𝑄

(𝑄)

Lemma

𝑃 ‖M𝒜𝑃/𝑄
(1𝒜𝑄

) ≃ 𝑃

Lemma

Q asks FramaC-WP to prove

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(1𝒜𝑄
))

q
FramaC

← M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(1𝒜𝑄
)

6/27/18 61

Synchronous, Asynchronous, Strong, Weak

Lemma

The asynchronous composiƟon is in strong simulaƟon’s kernel with

the synchronous composiƟon of compleƟons

∀𝑃 , 𝑄 ∶ 𝐿𝑇 𝑆.𝑃‖𝑎𝑄 ≃ M𝒜𝑄/𝑃
(𝑃)‖M𝒜𝑃/𝑄

(𝑄)

Lemma

𝑃‖M𝒜𝑃/𝑄
(1𝒜𝑄

) ≃ 𝑃

Lemma

Q asks FramaC-WP to prove

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(1𝒜𝑄
))

q
FramaC

← M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(1𝒜𝑄
)

6/27/18 61

Synchronous, Asynchronous, Strong, Weak

Lemma

The asynchronous composiƟon is in strong simulaƟon’s kernel with

the synchronous composiƟon of compleƟons

∀𝑃 , 𝑄 ∶ 𝐿𝑇 𝑆.𝑃‖𝑎𝑄 ≃ M𝒜𝑄/𝑃
(𝑃)‖M𝒜𝑃/𝑄

(𝑄)

Lemma

𝑃‖M𝒜𝑃/𝑄
(1𝒜𝑄

) ≃ 𝑃

Lemma

Q asks FramaC-WP to prove

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(1𝒜𝑄
))

q
FramaC

← M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(1𝒜𝑄
)

6/27/18 61

Soundness and ComposiƟonality of Q

By terminality of the terminal abstracƟon, 1𝒜𝑄

!
← 𝑄.

By functoriality of the compleƟon,

M𝒜𝑃/𝑄
(1𝒜𝑄

)
M𝒜𝑃/𝑄

← M𝒜𝑃/𝑄
(𝑄)

Therefore, by precongruence of simulaƟon (⪰ or ←) over ‖,

Theorem (Main Theorem)

The following is a commuƟng diagram of LTS with, as maps of LTS,

simulaƟons

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(1𝒜𝑄
)) M𝒜𝑄/𝑃

(𝑃)‖M𝒜𝑃/𝑄
(𝑄)

M𝒜𝑄/𝑃
(!)

oo

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(1𝒜𝑄
)

q
FramaC

OO

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(𝑄)

OO

!
oo

6/27/18 62

Soundness and ComposiƟonality of Q

By terminality of the terminal abstracƟon, 1𝒜𝑄

!
← 𝑄.

By functoriality of the compleƟon,

M𝒜𝑃/𝑄
(1𝒜𝑄

)
M𝒜𝑃/𝑄

← M𝒜𝑃/𝑄
(𝑄)

Therefore, by precongruence of simulaƟon (⪰ or ←) over ‖,

Theorem (Main Theorem)

The following is a commuƟng diagram of LTS with, as maps of LTS,

simulaƟons

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(1𝒜𝑄
)) M𝒜𝑄/𝑃

(𝑃)‖M𝒜𝑃/𝑄
(𝑄)

M𝒜𝑄/𝑃
(!)

oo

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(1𝒜𝑄
)

q
FramaC

OO

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(𝑄)

OO

!
oo

6/27/18 62

Soundness and ComposiƟonality of Q

By terminality of the terminal abstracƟon, 1𝒜𝑄

!
← 𝑄.

By functoriality of the compleƟon,

M𝒜𝑃/𝑄
(1𝒜𝑄

)
M𝒜𝑃/𝑄

← M𝒜𝑃/𝑄
(𝑄)

Therefore, by precongruence of simulaƟon (⪰ or ←) over ‖,

Theorem (Main Theorem)

The following is a commuƟng diagram of LTS with, as maps of LTS,

simulaƟons

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(1𝒜𝑄
)) M𝒜𝑄/𝑃

(𝑃)‖M𝒜𝑃/𝑄
(𝑄)

M𝒜𝑄/𝑃
(!)

oo

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(1𝒜𝑄
)

q
FramaC

OO

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(𝑄)

OO

!
oo

6/27/18 62

Soundness and ComposiƟonality of Q

By terminality of the terminal abstracƟon, 1𝒜𝑄

!
← 𝑄.

By functoriality of the compleƟon,

M𝒜𝑃/𝑄
(1𝒜𝑄

)
M𝒜𝑃/𝑄

← M𝒜𝑃/𝑄
(𝑄)

Therefore, by precongruence of simulaƟon (⪰ or ←) over ‖,

Theorem (Main Theorem)

The following is a commuƟng diagram of LTS with, as maps of LTS,

simulaƟons

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(1𝒜𝑄
)) M𝒜𝑄/𝑃

(𝑃)‖M𝒜𝑃/𝑄
(𝑄)

M𝒜𝑄/𝑃
(!)

oo

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(1𝒜𝑄
)

q
FramaC

OO

M𝒜𝑄/𝑃
(𝐶)‖M𝒜𝑃/𝑄

(𝑄)

OO

!
oo

6/27/18 62

What Was Accomplished

Weak simulation
by precongruence

Controller
Specification

Controller Volatile
Environment

async

C Implementation
Controller || Volatile

Environment

Weak simulation by
precongruence

Weak Simulation by
QFrama-C

Component

System Implementation

Controller

Input

Output

Weak simulation
by precongruence

Synchronous QParallel Composition

Controller
Specification

Component
SpecificationMA()

async
Output

Input

Synchronous QParallel Composition Safety Properties

)MA(

6/27/18 63

What Was Accomplished

Thus we have accomplished our goal -

Given a proposed witness of simulaƟon of a controller

implementaƟon by its spec, the Q compiler generates and

emplaces the ACSL annotaƟons from which FramaC generates

the proof of simulaƟon.

Weak simulation
by precongruence

Controller
Specification

Controller Volatile
Environment

async

C Implementation
Controller || Volatile

Environment

Weak simulation by
precongruence

Weak Simulation by
QFrama-C

Component

System Implementation

Controller

Input

Output

Weak simulation
by precongruence

Synchronous QParallel Composition

Controller
Specification

Component
SpecificationMA()

async
Output

Input

Synchronous QParallel Composition Safety Properties

)MA(

6/27/18 64

What Was Accomplished
Thus we have accomplished our goal -

Given a proposed witness of simulaƟon of a controller

implementaƟon by its spec, the Q compiler generates and

emplaces the ACSL annotaƟons from which FramaC generates

the proof of simulaƟon.

The Q compiler computes the asynchronous composiƟon of that

specificaƟon with specificaƟons for other components and

constructs LTL models of the composiƟons along with high level

properƟes in e.g. Why3 if they are to be proved or e.g. NuSMV if

they are to be checked.

Weak simulation
by precongruence

Controller
Specification

Controller Volatile
Environment

async

C Implementation
Controller || Volatile

Environment

Weak simulation by
precongruence

Weak Simulation by
QFrama-C

Component

System Implementation

Controller

Input

Output

Weak simulation
by precongruence

Synchronous QParallel Composition

Controller
Specification

Component
SpecificationMA()

async
Output

Input

Synchronous QParallel Composition Safety Properties

)MA(

6/27/18 65

What Was Accomplished

Thus we have accomplished our goal -

Given a proposed witness of simulaƟon of a controller

implementaƟon by its spec, the Q compiler generates and

emplaces the ACSL annotaƟons from which FramaC generates

the proof of simulaƟon.

The Q compiler computes the composiƟon of that specificaƟon

with (the compleƟon of the) specificaƟons for other

components, constructs LTL models of the composiƟons along

with high level properƟes in e.g. Why3 if they are to be proved

or e.g. NuSMV if they are to be checked.

By the Main Theorem, any Safety ProperƟes proved about that

composiƟon of specificaƟons implies the same property about

the actual System implementaƟon

Weak simulation
by precongruence

Controller
Specification

Controller Volatile
Environment

async

C Implementation
Controller || Volatile

Environment

Weak simulation by
precongruence

Weak Simulation by
QFrama-C

Component

System Implementation

Controller

Input

Output

Weak simulation
by precongruence

Synchronous QParallel Composition

Controller
Specification

Component
SpecificationMA()

async
Output

Input

Synchronous QParallel Composition Safety Properties

)MA(

6/27/18 66

What Was Accomplished

Weak simulation
by precongruence

Controller
Specification

Controller Volatile
Environment

async

C Implementation
Controller || Volatile

Environment

Weak simulation by
precongruence

Weak Simulation by
QFrama-C

Component

System Implementation

Controller

Input

Output

Weak simulation
by precongruence

Synchronous QParallel Composition

Controller
Specification

Component
SpecificationMA()

async
Output

Input

Synchronous QParallel Composition Safety Properties

)MA(

6/27/18 67

What is Next for Q?

Q is currently proprietary. However, there is internal discussion

about potenƟally open sourcing it

We would like to mechanize the metatheory: ideally Q would

provide cerƟficates in, e.g. Coq, that it is doing the right thing.

For that it would be nice to have a formal semanƟcs of ACSL.

6/27/18 68

Thanks!
!""#$#%&'()*'!+&,

!"#$%&'()*(+($,-.%/.0("1$2"3'.4%$,5267,%5-.

Jon M. Aytac (8756)
Assured Digital Syst & Comp

Robert Armstrong (8756)
Assured Digital Syst & Comp

Benjamin Curt Nilsen (8756)
Assured Digital Syst & Comp

Geoffrey Compton Hulette (8756)
Assured Digital Syst & Comp

!""#$#%&'()*'!+&,

Andrew Michael Smith (8756)
Assured Digital Syst & Comp

Philip Alden Johnson-Freyd (8756)
Assured Digital Syst & Comp

Jackson Mayo (8753)
Scalable Modeling Analysis

Jason Michnovicz (8756)
Assured Digital Syst & Comp

Ratish J. Punnoose (8212)
Weapons Subsystems 2

Karla Morris (8756)
Assured Digital Syst & Comp

6/27/18 69

Bonus Slide: What about Aeorai

There is already a plugin for producing LTL properƟes about C

programs: Aeorai

We could use this for our purposes only aŌer solving the

following problem

Let ℙ𝑃‖𝑎𝑄 ∶ Prop(𝑃 ‖𝑎𝑄) a temporal property on the

asynchronous composiƟon of 𝑃 and 𝑄. Given the specificaƟon

of 𝑄, what temporal property ℙ𝑃 ∶ Prop(𝑃) suffices to obtain

ℙ𝑃‖𝑎𝑄. This is someƟmes called the problem of producing

quoƟent specificaƟons

6/27/18 70

Bonus Slide: What about Aeorai

There is already a plugin for producing LTL properƟes about C

programs: Aeorai

We could use this for our purposes only aŌer solving the

following problem

Let ℙ𝑃‖𝑎𝑄 ∶ Prop(𝑃 ‖𝑎𝑄) a temporal property on the

asynchronous composiƟon of 𝑃 and 𝑄. Given the specificaƟon

of 𝑄, what temporal property ℙ𝑃 ∶ Prop(𝑃) suffices to obtain

ℙ𝑃‖𝑎𝑄. This is someƟmes called the problem of producing

quoƟent specificaƟons

6/27/18 70

Bonus Slide: What about Aeorai

There is already a plugin for producing LTL properƟes about C

programs: Aeorai

We could use this for our purposes only aŌer solving the

following problem

Let ℙ𝑃‖𝑎𝑄 ∶ Prop(𝑃 ‖𝑎𝑄) a temporal property on the

asynchronous composiƟon of 𝑃 and 𝑄. Given the specificaƟon

of 𝑄, what temporal property ℙ𝑃 ∶ Prop(𝑃) suffices to obtain

ℙ𝑃‖𝑎𝑄. This is someƟmes called the problem of producing

quoƟent specificaƟons

6/27/18 70

Bonus Slide: What about WPA?

_

ptkInit

ptkStart

msg1

msg2msg1

ptkNegotiating

msg3/\MICVer/\~ReplayedMsg

msg4

ptkDone

unconditional msg3/\MICRec/\~ReplayedMsg

6/27/18 71

Bonus Slide: Laƫce Structure on Labels

The labels in a C program will have some laƫce structure, i.e. a

Boolean algebra of expressions over its variables, and this puts some

constraints on
⋅

→∶ 𝒜 → 𝒫(𝑆 × 𝑆),

𝛽 ⇒ 𝛼 𝑝
𝛼
→𝐶 𝑝′

𝑝
𝛽
→𝐶 𝑝′

𝑝
𝛼
→ 𝑝′ 𝑝

𝛽
→𝐶 𝑝′

𝑝
𝛼∨𝛽
→ 𝐶 𝑝′ 𝑝

⟂
→𝐶 𝑝′

(2.2)

So
⋅

→ is a Galois ConnecƟon. 𝑓[𝑅𝒜] must therefore be monotonic for

our witness to be viable.

6/27/18 72

Bonus Slide: Laƫce Structure on Labels

The labels in a C program will have some laƫce structure, i.e. a

Boolean algebra of expressions over its variables, and this puts some

constraints on
⋅

→∶ 𝒜 → 𝒫(𝑆 × 𝑆),

𝛽 ⇒ 𝛼 𝑝
𝛼
→𝐶 𝑝′

𝑝
𝛽
→𝐶 𝑝′

𝑝
𝛼
→ 𝑝′ 𝑝

𝛽
→𝐶 𝑝′

𝑝
𝛼∨𝛽
→ 𝐶 𝑝′ 𝑝

⟂
→𝐶 𝑝′

(2.2)

So
⋅

→ is a Galois ConnecƟon. 𝑓[𝑅𝒜] must therefore be monotonic for

our witness to be viable.

6/27/18 72

Bonus Slide: Laƫce Structure on Labels

The labels in the abstracƟon are the expressions over abstract

variables Var𝑄 taking values in abstract value domain 𝕍𝑄.

if 𝑓[𝑅𝒜] factors through a map of variables

𝑓Var ∶ Var𝑄 → 𝒫(Var𝑃) and a map of their value domains

𝑓𝕍 ∶ 𝕍𝑄 → 𝒫(𝕍𝑃), then we can know 𝑓[𝑅𝒜] is monotonic, no

further proof obligaƟons required.

Otherwise, checking monotonicity of 𝑓[𝑅𝒜] requires reasoning

about the laƫce structure of the algebra of boolean expressions

over the execuƟon environment of the C program

6/27/18 73

Bonus Slide: Laƫce Structure on Labels

The labels in the abstracƟon are the expressions over abstract

variables Var𝑄 taking values in abstract value domain 𝕍𝑄.

if 𝑓[𝑅𝒜] factors through a map of variables

𝑓Var ∶ Var𝑄 → 𝒫(Var𝑃) and a map of their value domains

𝑓𝕍 ∶ 𝕍𝑄 → 𝒫(𝕍𝑃), then we can know 𝑓[𝑅𝒜] is monotonic, no

further proof obligaƟons required.

Otherwise, checking monotonicity of 𝑓[𝑅𝒜] requires reasoning

about the laƫce structure of the algebra of boolean expressions

over the execuƟon environment of the C program

6/27/18 73

Bonus Slide: Laƫce Structure on Labels

The labels in the abstracƟon are the expressions over abstract

variables Var𝑄 taking values in abstract value domain 𝕍𝑄.

if 𝑓[𝑅𝒜] factors through a map of variables

𝑓Var ∶ Var𝑄 → 𝒫(Var𝑃) and a map of their value domains

𝑓𝕍 ∶ 𝕍𝑄 → 𝒫(𝕍𝑃), then we can know 𝑓[𝑅𝒜] is monotonic, no

further proof obligaƟons required.

Otherwise, checking monotonicity of 𝑓[𝑅𝒜] requires reasoning

about the laƫce structure of the algebra of boolean expressions

over the execuƟon environment of the C program

6/27/18 73

So we present the data type provide required to construct the

simulaƟon witness 𝑅 as well as the informaƟon to generate 1𝒜𝐼
in a

format encouraging the designer to give the witness without

incurring addiƟonal proof obligaƟons

6/27/18 74

CompleƟon is not Strong

The compleƟon is not, however, a strong endofunctor on LTS

M𝒜𝑄/𝑃
(𝑃 ‖M𝒜𝑃/𝑄

(𝑄)) → M𝒜𝑄/𝑃
(𝑃)‖M𝒜𝑃/𝑄

(𝑄)

6/27/18 75

	Motivation
	Workflow: Ovals and Arrows

