DEPENDABLE
COMPUTING

Proving Security Properties in
Software of Unknown Provenance

SOUND STATIC ANALYSIS FOR SECURITY WORKSHOP

Ashlie B. Hocking! 2018 June 2017

In collaboration with: Ben Rodesl?, John Knightl, Jack Davidson?2, and Clark Coleman?

'Dependable Computing 2Zephyr Software

Formal Methods

Q: When should formal methods be applied?

A: As soon as you can!

Amey, P. (2002). Correctness by Construction: Better can also be
Cheaper. CrossTalk: the Journal of Defense Software Engineering, 2,
24-28.

2018-06-27 SOUP Security

Formal Methods and the V-Model

Correctness
Consistency

Consistency

Consistency

Standards
Compliance

v
y

2018-06-27 SOUP Security

Software of Unknown Provenance (SOUP)

MS15-078

* Formal methods are best when applied

* Embedded systems may rely on soft ith no source
code or with source code contributed by unknown authors
* Even when you have source code, compiler can introduce errors

* New software might use existing libraries of unknown
provenance

* How can we leverage formal methods with binary code?

2018-06-27

Formal Methods and the V-Model

2018-06-27

Formal Methods

Q: When should formal methods be applied?

A: As soon as reasonably practicable!

If we are given an existing software binary (library or
executable) to use, how should we apply formal methods to it?

2018-06-27

Is It Too Late?

Has the safety/security “horse”
already left the stable?

2018-06-27 SOUP Security

Goal and Approach

Goal: Prove Specific Security Properties about software for which we
do not have the source code

Approach:
1. Generate SPARK Ada code from the binary software

2. Prove properties about the generated SPARK Ada code
3. Insert guards for unsafe binaries

2018-06-27 SOUP Security

Why SPARK Ada and SPARKPro?

e SPARK Ada language
* Designed for proof
* Familiar
* Simple
* SPARKPro
* Proof tools provide capability to establish proofs
e cvcd, z3, alt-ergo (by default, but also coq, isabelle, pvs...)
* Industrial strength support
e Can generate an executable for testing

2018-06-27 SOUP Security

Formal Methods and the V-Model

2018-06-27

Proces jlisamim/ing Properties of SOUP

address integrity

Leverages Machine
Representation

E.g.,
ObjDump

Desired Machine

Properties : I
and IDAPro > Library parsable
Binary : Binary : SPARK Ada | SPARKAda .| SPARKPro »| Proof Report
Program Ana|yzer Translator Translation proof tools
________ o __

SPARK Ada Machine
Representation Library

Machine Instruction
Architecture Set

2018-06-27 SOUP Security

Details of the Representation Library

:_ SPARK Ada Machine Representa‘“on L|brary : 12 type Mem__Array is array (Unsigned64) of Unsigneds;
| _ _ _ 13 Memory: Mem_ Array := Mem_ Array’(others => 0);
| Machine Architecture Instruction Set |14 function ReadMem16(addr: in Unsigned64) return Unsignedl6 with
| ' 15 Global => (Input => Memory),
Integer Flags I 16 Post => (((ReadMeml6’Result and 16#00FF#) = Unsignedl6(Memory(addr))) and
; Registers m]%]j S et 7 ((ReadMem1l6’Result and 16#FF00#) = Unsignedl6(Memory(addr+1))*16#100#));
I peciiication I 18 procedure WriteMem16(addr : in Unsigned64; Val : in Unsigned16) with
I Memory I 19 Global => (In_Out => Memory),
I I 20 Post => ((ReadMem16(addr) = Val) and (for all i in Unsigned64 =>
: : 21 (if ((i /= addr) and (i /= addr + 1)) then (Memory(i) = Memory’Old(i)))));
| : Implementation |
: Floating Point :
i 622 procedure setnbe_ CL with
| Registers I 623 Global => (Input => (ZeroFlag, CarryFlag), In_ Out => RCX),
: : : 624 Post => (if ((not CarryFlag) and (not ZeroFlag)) then (CL = 1) else (CL = 0));
[) [
| 5 |
| o |
- - |
Rix 133 function EAX return Unsigned32 with
134 Global => (Input => RAX),
135 Post => (EAX’Result = Unsigned32(RAX and 16#00000000FFFFFFFE#));
136 procedure Write_ EAX(Val : in Unsigned32) with
137 Global => (In_ Out => RAX),
— 138 Post => ((EAX = Val) and ((RAX and 16#FFFFFFFF00000000#) = (16#%#0000000000000000#)));

2018-06-27 SOUP Security

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

6 procedure zero_ array is
7 begin

SPARK Ada Translation

Pre-condition required for

. retu rna d d ress integ r|ty 14 procedure zero_ array with
--100000ed4: test esi,esi 15 Global => (In_Out => (X86.Memory, X86.RSP, X86.RAX, X86.SignFlag,
X86.ZeroFlag := (X86.ESI = 0); 16 X86.0OverflowFlag, X86.CarryFlag, X86.ZeroFlag),
i = > _ . . Input => (X86.RSI, X86.RDI)),
§gg'%§:§§£ﬁa (XEGFEIEL. X86.Max Additional information "W pre => ((X86.RDI < Unsigned64’Last - Unsigned64(X86.ESI) * 4) and
) . g : ’ ((X86.RSP + 7 < X86.RDI) or (X86.RSP >= X86.RDI + Unsigned64(X86.ESI) * 4))),
--100000ed6: jle 100000eec <__zero__ar for downstream analvsis Post =>
if (X86.ZeroFlag or X86.5ignFlag /= y for all i in Unsigned64 =>

--100000eec: f3 c3 repz ret (if ((< X86.RDI) or (i >= (X86.RDI + (Unsigned64(X86.ESI)*4))))

— . . then X86.Memory(i) = X86.Memory’Old(i))) and
XEG’R_SP S 6 RSP + 8; Stack pointer (X86.RSP — (X86.RSP'OLL + 8)) and ~ 7
return; . (X86.Memory(X86. RSP’Old) = X86.Memory’Old(X86.RSP’Old)) and
end if; incremented by 8 (X86.Memory(X86. RSP’Old + 1) = X86.Memory’Old(X86.RSP’Old + 1)) and
--100000ed8: mov eax,0x0 (X86.Memory(X86.RSP’Old + 2) = X86.Memory’Old(X86.RSP’Old + 2)) and
X86.Write. EAX(0); (X86.Memory(X86.RSP’Old + 3) = X86.Memory’Old(X86.RSP’Old + 3)) and
loop - Ret d d (X86.Memory(X86.RSP’Old + 4) = X86.Memory’Old(X86.RSP’Old + 4)) and
eturn a ress (X86.Memory(X86.RSP’Old + 5) = X86.Memory’Old(X86.RSP’Old + 5)) and
100000edd: DWORD PTR [rdi+rax*4 (X86‘Memor§(X86.RSP’Old +6) = xse.Memor§'01d(X86.Rsp’om + 6)) and
X86.WriteMem32(X86.RDI +(X86.RA) inteorit (X86.Memory(X86.RSP’Old + 7) = X86.Memory’Old(X86.RSP’Old + 7));
--100000ee4: add rax,0x1 grity

X86.RAX := X86.RAX + 1;
--100000ee8: cmp esi,eax
X86.ZeroFlag := ((X86.ESI - X86.EAX) = 0);
X86.Signklag := (X86.ESI < X86.EAX); 24 void zero_ array(int *array, int size) {
X86.0OverflowFlag := ((X86.SignFlag and (X86.EAX > X86.MaxSignedInt32) and 25 for (int i = 0; i < size; i++) arraylil = 0;
(X86.ESI <= X86.MaxSignedInt32)) or ((not X86.SignFlag) and 26 }
(X86.ESI > X86.MaxSignedInt32) and (X86.EAX <= X86.MaxSignedInt32)));
--100000e¢ea: jg 100000edd <_zero_ array+0x9>
exit when(not(X86.ZeroFlag=False and X86.SignFlag=X86.OverflowFlag));
end loop;
--100000eec: repz ret
X86.RSP := X86.RSP + 8§;
return;

37 end zero_ array;

2018-06-27 SOUP Security

Process for Proving Properties of SOUP

Desired Machine
parsable

Properties

Binary | Binary | SPARKAda | | SPARKAda | | SPARKPro | | proof Report
Program Ana|yzer Translator - Translation - proof tools -
________ o __

i SPARK Ada Machine
Representation Library

| |
| |
| |
| |

) |
: Machine Instruction |
1 | Architecture Set I
| |
| |

—-— e e e e e e e e e e e e e e e e)

2018-06-27 SOUP Security

Completing The Proof

Binary Program
+
Security
Properties

Binary Theorem

Program

Static Binary |
Rewriter

Prover

Guard
Instructions

2018-06-27 SOUP Security

Guards and Proofs

* Guards can be quite effective

* Added code can require additional computational resources
* Real-time constraints might be at risk

* Embedded systems often have limited room for additional code

e Can we prove that software does not have a security violation?

And then prove that the
modified code does not

* When we cannot prove that software (EUEEERUIVAICEIELE, ity

violation...

e Guards can be added to guaraftee that the insecure situation is protected
against

* If so, guards are not required for those sit

2018-06-27 SOUP Security

Case Study

* Looked at 3 security properties:
* The exit value in the RSP register is 8 larger than the entry value in the RSP register
for all possible execution paths.

* The argument to setuid (in RDI) is non-zero for every call to setuid for all possible
execution paths.

 The return address of a function is unmodified. Specifically, the 8 bytes in memory
pointed to by the RSP register contain the same value when the function exits as
they did when the function begins.

 Examined 11 programs, 2 of which used setuid

* All 11 programs were able to prove correct stack pointer (RSP).
 Both programs using setuid were proven to use it with non-zero values.

* Proved unmodified return address in 5 of 7 programs instrumented for checking this
property — the other 2 programs could possibly modify the return address.

2018-06-27 SOUP Security

Summary

e Advantages
e Can prove security properties for SOUP without overhead of guards
e Automatable
 Disadvantages
* When proofs do not automatically discharge, manual proofs are difficult

e Future Work

* Robust heuristics for automatically generating provable SPARK Ada
representation
e Assertions and loop invariants

* Additional security properties

2018-06-27 SOUP Security

DEPENDABLE
COMPUTING

This research was developed with funding from the Defense Advanced Research Projects
Agency (DARPA) under contract W31P4Q-14-C— 0086. The views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government. The authors
thank the software engineers of AdaCore, in particular Yannick Moy, for providing support.

