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Formal Methods

Q: When should formal methods be applied?

A: As soon as you can!

Amey, P. (2002). Correctness by Construction: Better can also be
Cheaper. CrossTalk: the Journal of Defense Software Engineering, 2,
24-28.
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Formal Methods and the V-Model
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Software of Unknown Provenance (SOUP)

MS15-078

* Formal methods are best when applied

* Embedded systems may rely on soft ith no source
code or with source code contributed by unknown authors
* Even when you have source code, compiler can introduce errors

* New software might use existing libraries of unknown
provenance

* How can we leverage formal methods with binary code?
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Formal Methods and the V-Model

2018-06-27



Formal Methods

Q: When should formal methods be applied?

A: As soon as reasonably practicable!

If we are given an existing software binary (library or
executable) to use, how should we apply formal methods to it?
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Is It Too Late?

Has the safety/security “horse”
already left the stable?

2018-06-27 SOUP Security



Goal and Approach

Goal: Prove Specific Security Properties about software for which we
do not have the source code

Approach:
1. Generate SPARK Ada code from the binary software

2. Prove properties about the generated SPARK Ada code
3. Insert guards for unsafe binaries
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Why SPARK Ada and SPARKPro?

e SPARK Ada language
* Designed for proof
* Familiar
* Simple
* SPARKPro
* Proof tools provide capability to establish proofs
e cvcd, z3, alt-ergo (by default, but also coq, isabelle, pvs...)
* Industrial strength support
e Can generate an executable for testing
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Formal Methods and the V-Model
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Proces jlisamim/ing Properties of SOUP

address integrity

Leverages Machine
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________ o __
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Details of the Representation Library

:_ SPARK Ada Machine Representa‘“on L|brary : 12 type Mem__Array is array (Unsigned64) of Unsigneds;
| _ _ _ 13 Memory: Mem_ Array := Mem_ Array’(others => 0);
| Machine Architecture Instruction Set |14 function ReadMem16(addr: in Unsigned64) return Unsignedl6 with
| ' 15 Global => (Input => Memory),
Integer Flags I 16 Post => (((ReadMeml6’Result and 16#00FF#) = Unsignedl6(Memory(addr))) and
; Registers m]%]j S et 7 ((ReadMem1l6’Result and 16#FF00#) = Unsignedl6(Memory(addr+1))*16#100#));
I peciiication I 18 procedure WriteMem16(addr : in Unsigned64; Val : in Unsigned16) with
I Memory I 19 Global => (In_Out => Memory),
I I 20 Post => ((ReadMem16(addr) = Val) and (for all i in Unsigned64 =>
: : 21 (if ((i /= addr) and (i /= addr + 1)) then (Memory(i) = Memory’Old(i)))));
| : Implementation |
: Floating Point :
i 622 procedure setnbe_ CL with
| Registers I 623 Global => (Input => (ZeroFlag, CarryFlag), In_ Out => RCX),
: : : 624 Post => (if ((not CarryFlag) and (not ZeroFlag)) then (CL = 1) else (CL = 0));
[ ) [
| 5 |
| o |
- - |
Rix 133 function EAX return Unsigned32 with
134 Global => (Input => RAX),
135 Post => (EAX’Result = Unsigned32(RAX and 16#00000000FFFFFFFE#));
136 procedure Write_ EAX(Val : in Unsigned32) with
137  Global => (In_ Out => RAX),
— 138 Post => ((EAX = Val) and ((RAX and 16#FFFFFFFF00000000#) = (16#%#0000000000000000#)));
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6 procedure zero_ array is
7 begin

SPARK Ada Translation

Pre-condition required for

. retu rna d d ress integ r|ty 14 procedure zero_ array with
--100000ed4: test esi,esi 15 Global => (In_Out => (X86.Memory, X86.RSP, X86.RAX, X86.SignFlag,
X86.ZeroFlag := (X86.ESI = 0); 16 X86.0OverflowFlag, X86.CarryFlag, X86.ZeroFlag),
i = > _ . . Input => (X86.RSI, X86.RDI)),
§gg'%§:§§£ﬁa (XEGFEIEL. X86.Max Additional information "W pre => ((X86.RDI < Unsigned64’Last - Unsigned64(X86.ESI) * 4) and
) . g : ’ ((X86.RSP + 7 < X86.RDI) or (X86.RSP >= X86.RDI + Unsigned64(X86.ESI) * 4))),
--100000ed6: jle 100000eec <__zero__ar for downstream analvsis Post =>
if (X86.ZeroFlag or X86.5ignFlag /= y for all i in Unsigned64 =>

--100000eec: f3 c3 repz ret (if (( < X86.RDI) or (i >= (X86.RDI + (Unsigned64(X86.ESI)*4))))

— . . then X86.Memory(i) = X86.Memory’Old(i))) and
XEG’R_SP S 6 RSP + 8; Stack pointer (X86.RSP — (X86.RSP'OLL + 8)) and ~ 7
return; . (X86.Memory(X86. RSP’Old) = X86.Memory’Old(X86.RSP’Old)) and
end if; incremented by 8 (X86.Memory(X86. RSP’Old + 1) = X86.Memory’Old(X86.RSP’Old + 1)) and
--100000ed8: mov eax,0x0 (X86.Memory(X86.RSP’Old + 2) = X86.Memory’Old(X86.RSP’Old + 2)) and
X86.Write. EAX(0); (X86.Memory(X86.RSP’Old + 3) = X86.Memory’Old(X86.RSP’Old + 3)) and
loop - Ret d d (X86.Memory(X86.RSP’Old + 4) = X86.Memory’Old(X86.RSP’Old + 4)) and
eturn a ress (X86.Memory(X86.RSP’Old + 5) = X86.Memory’Old(X86.RSP’Old + 5)) and
100000edd: DWORD PTR [rdi+rax*4 (X86‘Memor§(X86.RSP’Old +6) = xse.Memor§'01d(X86.Rsp’om + 6)) and
X86.WriteMem32(X86.RDI +(X86.RA) inteorit (X86.Memory(X86.RSP’Old + 7) = X86.Memory’Old(X86.RSP’Old + 7));
--100000ee4: add rax,0x1 grity

X86.RAX := X86.RAX + 1;
--100000ee8: cmp esi,eax
X86.ZeroFlag := ((X86.ESI - X86.EAX) = 0);
X86.Signklag := (X86.ESI < X86.EAX); 24 void zero_ array(int *array, int size) {
X86.0OverflowFlag := ((X86.SignFlag and (X86.EAX > X86.MaxSignedInt32) and 25 for (int i = 0; i < size; i++) arraylil = 0;
(X86.ESI <= X86.MaxSignedInt32)) or ((not X86.SignFlag) and 26 }
(X86.ESI > X86.MaxSignedInt32) and (X86.EAX <= X86.MaxSignedInt32)));
--100000e¢ea: jg 100000edd <_zero_ array+0x9>
exit when(not(X86.ZeroFlag=False and X86.SignFlag=X86.OverflowFlag));
end loop;
--100000eec: repz ret
X86.RSP := X86.RSP + 8§;
return;

37 end zero_ array;
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Process for Proving Properties of SOUP

Desired Machine
parsable

Properties

Binary | Binary | SPARKAda | | SPARKAda | | SPARKPro | | proof Report
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________ o __
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Completing The Proof

Binary Program
+
Security
Properties

Binary Theorem

Program

Static Binary |
Rewriter

Prover

Guard
Instructions
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Guards and Proofs

* Guards can be quite effective

* Added code can require additional computational resources
* Real-time constraints might be at risk

* Embedded systems often have limited room for additional code

e Can we prove that software does not have a security violation?

And then prove that the
modified code does not

* When we cannot prove that software (EUEEERUIVAICEIELE, ity

violation...

e Guards can be added to guaraftee that the insecure situation is protected
against

* If so, guards are not required for those sit
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Case Study

* Looked at 3 security properties:
* The exit value in the RSP register is 8 larger than the entry value in the RSP register
for all possible execution paths.

* The argument to setuid (in RDI) is non-zero for every call to setuid for all possible
execution paths.

 The return address of a function is unmodified. Specifically, the 8 bytes in memory
pointed to by the RSP register contain the same value when the function exits as
they did when the function begins.

 Examined 11 programs, 2 of which used setuid

* All 11 programs were able to prove correct stack pointer (RSP).
 Both programs using setuid were proven to use it with non-zero values.

* Proved unmodified return address in 5 of 7 programs instrumented for checking this
property — the other 2 programs could possibly modify the return address.
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Summary

e Advantages
e Can prove security properties for SOUP without overhead of guards
e Automatable
 Disadvantages
* When proofs do not automatically discharge, manual proofs are difficult

e Future Work

* Robust heuristics for automatically generating provable SPARK Ada
representation
e Assertions and loop invariants

* Additional security properties
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